Состав звена |
Вид изолируемых поверхностей |
Н.вр. |
Расц. |
№ |
|
4 разр. 2 разр. -2 |
трубопроводы |
57 |
0,7 |
0-48,3 |
1 |
108 |
0,46 |
0-31,7 |
2 |
||
159 |
0,25 |
0-17,3 |
3 |
||
5 разр. 2 разр. -1 |
фасонные части |
0,96 |
0-74,4 |
4 |
§ Е11-12. Изоляция фасонных частей трубопроводов минеральной или стеклянной ватой внабивку
Состав работ:
1. Резка
сетки или драночной плетенки. 2. Установка
и крепление на трубопроводе опорных
колец из теплоизоляционных изделий. 3.
Установка металлической сетки или
драночной плетенки и крепление к опорным
кольцам. 4. Набивка ваты с уплотнением
и выравниванием поверхности. 5. Сшивка
стыков. 6. Установка проволочных колец.
Нормы времени и расценки на 1 м2 изоляции
Состав звена |
Вид материала |
Толщина |
||||||
40 |
80 |
120 |
160 |
200 |
240 |
|||
4 разр. 2 разр. -2 |
минеральная вата |
0,84 0-58 |
1,1 0-75,9 |
1,3 0-89,7 |
1,5 1-04 |
1,7 1-17 |
2 1-38 |
1 |
стеклянная вата |
0,91 0-62,8 |
1,2 0-82,8 |
1,4 0-96,6 |
1,6 1-10 |
2 1-38 |
2,1 1-45 |
2 |
|
а |
б |
в |
г |
д |
е |
№ |
Примечания: 1.
Нормами предусмотрена набивка минеральной
или стеклянной ваты с учетом установленных
коэффициентов уплотнения.
2. При установке
готовых металлических опорных колец
или их частей Н.вр. и Расц. умножать на
0,85 (ПР-1).
3. При устройстве
безопорной изоляции Н.вр. и Расц. умножать
на 0,7 (ПР-2).
4. На каждые 40 мм
увеличения толщины изоляции сверх 240
мм Н.вр. и Расц. умножать на 1,15 (ПР-3).
§ Е11-13. Изоляция трубопроводов в каналах, траншеях и коробах минеральной ватой
Состав работ:
1. Заполнение
канала, траншеи или короба минеральной
ватой с перекидкой на расстояние до 3
м. 2. Разравнивание и уплотнение минеральной
ваты.
Термоизолировщик
2 разр.
Норма времени и расценка на 1 м3 засыпки или набивки
Н.вр. |
Расц. |
1,3 |
0-83,2 |
Примечание. Объем
засыпки или набивки следует определять
с учетом установленных коэффициентов
уплотнения за вычетом объема, занимаемого
трубопроводами.
§ Е11-14. Изоляция асбестовыми матрацами
Состав работ:
1. Разметка
и выполнение в матрацах отверстий и
вырезов для болтов. 2. Пришивка крючков
по месту. 3. Укладка матрацев с разравниванием
их и стягиванием по крючкам проволокой
или шнуром. 4. Крепление бандажами.
Нормы времени и расценки на 1 м2 изоляции
Состав звена |
Вид изолируемых поверхностей |
Вид матрацев |
||
без вырезов |
с вырезами |
|||
5 разр. 3 разр. 2 разр. -1 |
плоские |
0,48 0-34,1 |
0,86 0-61,1 |
1 |
5 разр. 3 разр. 2 разр. -1 |
криволинейные или |
0,63 0-47,3 |
0,9 0-67,5 |
2 |
6 разр. 3 разр. 2 разр. -1 |
фасонные части |
0,85 0-68 |
1,7 1-36 |
3 |
а |
б |
№ |
Примечания: 1.
Нормами предусмотрена толщина матрацев
до 50 мм. При толщине матраца св. 50 мм
Н.вр. и Расц. умножать на 1,1 (ПР-1).
2. Нормами
предусмотрена изоляция в один слой. При
изоляции в два слоя плоских поверхностей
Н.вр. и Расц. умножать на 1,6 (ПР-2), а при
изоляции трубопроводов и фасонных
частей — на 1,8 (ПР-3).
3. Площадь вырезов
в матрацах при подсчете объема работы
не исключать.
Соседние файлы в папке ЕНиР
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
24.02.20162.63 Mб33ЕНиР Сборник Е16.doc
Какую функцию выполняет защита
Одно из назначений тепловой изоляции оборудования и трубопроводов – в снижении величин по тепловым потокам внутри конструкций. Материалы покрываются защитно – покровными оболочками, которые гарантируют полную сохранность слоя, в любых условиях эксплуатации.
Большое внимание вопросам тепловой изоляции уделяют в разных направлениях промышленности и энергетики. В сооружениях и оборудовании в этих отраслях именно тепловая изоляция становится одним из наиболее важных компонентов
Результатом становится не только снижение потерь по теплу при взаимодействиях с окружающей средой. Но и расширение возможностей по сохранению оптимального теплового режима.
Утепление трубопроводов по СНиП
При производстве работ по оборудованию и монтажу трубопроводов необходимо соблюдать нормы СНиП. Что же такое СНиП? Это строительные нормы и правила по организации строительного производства, по соответствию стандартам, техническим условиям и нормативным ведомственным актам.
Основные нормы и правила при теплоизоляции
Тепловые сети – это один из основных элементов централизованного теплоснабжения. Следует строго придерживаться норм и правил при составлении проекта теплоизоляции трубопроводов. При соблюдении СНиП, теплоизоляция трубопроводов будет проведена качественно без нарушений стандартов. тепловая изоляция трубопроводов СНиП предусмотрена для линейных участков трубопроводов, тепловых сетей, компенсаторов и опор труб. Утепление трубопроводов в жилых домах, производственных зданиях требует четкого соответствия нормам проектирования и системе пожарной безопасности.
Качество материалов должно соответствовать СНиП, теплоизоляция трубопроводов должна быть направлена на уменьшение потерь тепла.
Основные задачи теплоизоляции, особенности выбора материалов
Основной целью теплоизоляции является уменьшение потерь тепла в системах отопления или трубопроводов с горячим водоснабжением. Основная функция утеплителя направлена на предотвращение конденсата. Конденсат может образоваться как на поверхности трубы, так и в изоляционном слое. Кроме того, согласно нормам техники безопасности, утепление трубопроводов должно обеспечивать определенную температуру на поверхности изоляции, а в случае застоя воды предохранять от замерзания и заледенения в зимний период.
Утепление трубопроводов также увеличивает срок эксплуатации труб.
По нормам СНиП, теплоизоляция трубопроводов применяется как для централизованного отопления, так и уменьшает теплопотери внутридомовых тепловых сетей. Что необходимо учесть при выборе теплоизоляции:
- Диаметр трубы. От него зависит, какой тип изолятора будет применяться. Трубы могут быть цилиндрической формы, полуцилиндры или маты мягкие в рулонах. Утепление труб маленького диаметра в основном выполняется с помощью цилиндров и полуцилиндров.
- Температуру теплоносителя.
- Условия, в которых будут эксплуатироваться трубы.
Виды утеплителей
Рассмотрим самые популярные и часто используемые материалы для теплоизоляции:
- Стекловолокно. Материалы из стеклянного волокна часто используют для трубопроводов надземной прокладки, так как они имеют длительный срок эксплуатации. Стекловолокно имеет низкую температуру применения и характеризуется низкой плотностью. В качественном стекловолокне высокая вибрационная, химическая и биологическая стойкость.
- Минеральная вата. Утепление трубопроводов минеральной ватой является весьма эффективным теплоизолятором. Этот изоляционный материал применят в разных условиях. В отличие от стекловолокна, которое имеет низкую температуру применения (до 180ºС), минеральная вата выдерживает температуру до 650 ºС. При этом сохраняются ее теплоизолирующие и механические свойства. Минеральная вата не теряет форму, имеет высокую стойкость к химическому воздействию, кислоте. Этот материал не токсичен и отличается низкой степенью влагопоглощения.
В свою очередь, минеральная вата бывает двух форм: каменная и стеклянная.
Утепление трубопроводов с помощью минеральной ваты применяется в основном в жилых домах, общественных и бытовых помещениях, а также для защиты поверхностей, которые подвергаются нагреву.
- Пенополиуритан имеет широкую область применения, но является достаточно дорогим материалом. Согласно нормам СНиП, тепловая изоляция трубопроводов является экологически безопасной и не воздействует на здоровье человека. Пенополиуритан устойчив к воздействию внешних факторов, нетоксичен и довольно прочен.
- Пенополистирол. В некоторых областях промышленности пенопласт является незаменимым материалом, так как имеет низкие показатели теплопроводности и влагопоглощения и долгий срок службы. Пенополистирол трудно воспламеняем, и является отличным звукоизолятором.
- Кроме вышеперечисленных материалов, утепление трубопроводов можно осуществлять и с помощью других менее известных, но не менее практичных утеплителей, таких как пеностекло и пеноизол. Эти материалы прочные, безопасные и являются близкими родственниками пенопласта.
Защиту от коррозии и высокую теплоизоляцию труб может обеспечить и теплоизоляционная краска.
Это относительно новый материал, основным плюсом которого является то, что она проникает в труднодоступные места и способна выдерживать высокие температурные перепады.
dom-data.ru
Порядок проведения расчётов
Без выполнения расчётов нельзя выбрать оптимальный материал, определить подходящую толщину. Без этого невозможно определить, какой плотностью будет обладать тепловая изоляция оборудования и трубопроводов. Среди факторов, оказывающих влияние на конечный результат подсчётов:
- проведение тепла.
- Способность защищать от деформаций.
- Воздействия механического типа.
- То, какой является температура на изолируемых поверхностях.
- Вибрация на оборудовании и возможность его появления.
- Температурный показатель в окружающей среде.
- Предел по допустимой нагрузке.
Не обойтись и без учёта нагрузки, которая возникает при взаимодействии оборудования или трубопроводов с окружающим грунтом и транспортными средствами, которые проходят по поверхности. Специальные формулы используются для любых систем по передаче тепла, которые бывают стационарными, нестационарными.
Представляем серию формул для самостоятельного расчета толщины теплоизоляции.
Расчёт для теплоизоляции искусственно адаптируется ко всем условиям эксплуатации, характерным для того или иного и трубопровода или оборудования. Сами условия формируются при участии:
- Строительных материалов для подготовки к сменам времён года.
- Влажности, способствующей ускорению теплообмена.
Профессиональные компании предоставляют исполнителям инженерные данные для будущего строительства. Какие именно требования оказывают наибольшее влияние на выбор подходящих изоляционных покрытий?
- Теплопроводность.
- Звукоизоляция.
- Возможность поглощать или отталкивать воду.
- Уровень паропроницаемости.
- Негорючесть.
- Плотность.
- Сжимаемость.
Изоляция и СНиПы
СНиПы – это разновидности нормативных документов. В производстве они получили достаточно широкое распространение. Благодаря использованию СНиПов есть возможность выполнить теплоизоляцию по всем нормам относительно плотности. Учитывается и такой показатель, как коэффициент теплопроводности для различных типов.
Видео
Например, отдельные требования СНиП предъявляют к поверхностям, которые имеют температуру не больше 12 градусов. В данном случае обязательным требованием становится наличие пароизоляционного слоя.
Расчёт проводится по специальной процедуре с поверхностями, у которых нет определённого температурного режима. И которые слишком быстро меняют технические характеристики.
Тепловая изоляция трубопроводов: пути решения проблемы
Обеспечить эффективную защиту для систем трубопроводов от факторов внешней среды главным образом от температуры наружного воздуха можно, если принять следующие меры:
- создание системы обогрева с использованием нагревательных кабелей. Этот способ предполагает выполнение работы по закреплению нагревательных элементов поверх бытовых трубопроводов либо заведение приспособления внутрь коллектора. Работают элементы нагрева от электрической сети. Обращаем внимание что, когда выполняется постоянный обогрев трубопроводов, то используются саморегулирующие провода, включение и отключение которых происходит в автоматическом режиме. Применение таких систем обогрева исключает ситуации перегрева конструкций;
- прокладка сетей трубопроводов ниже уровня промерзания грунта. Такой вариант их размещения позволяет исключить контакт сетей с источниками холода;
- использование подземных лодок закрытого типа. Воздушное пространство изолированное, поэтому воздух вокруг трубопроводов медленно остывает. А это позволяет исключить замерзание теплоносителя или другого содержимого труб;
- создание контура из теплоизоляционных материалов для обеспечения высокой термозащиты трубопроводов. Наиболее распространенным является именно такой вид защиты трубопроводов.
Так как последний способ чаще всего используется, то имеет смысл поговорить о нем более подробно.
Нормативы к тепловой изоляции трубопроводов
Требования к тепловой изоляции трубопроводов оборудования сформулированы в СНиП. В нормативных документах содержится подробная информация о материалах,
которые могут использоваться для теплоизоляции трубопроводов, а кроме этого методах проведения работ. Кроме этого, в нормативных документах
обозначены стандарты к контурам теплоизоляции, которые часто применяются для изоляции трубопроводов.
В СНиП содержатся следующие рекомендации по теплоизоляции трубопроводов:
- вне зависимости от того, какую температуру имеет теплоноситель, любая система трубопроводов должна утепляться;
- применять для создания теплоизоляционного слоя можно как готовые, так и сборные конструкции;
- защита от коррозии должна быть предусмотрена для металлических частей трубопроводов.
Желательным является использование при изоляции трубопроводов многослойной конструкции контура. В ее состав обязательно должны входить следующие слои:
- утеплитель;
- пароизоляция;
- защита из плотного полимера, нетканого полотна или металла.
В некоторых случаях может быть построено армирование, которое исключает смятие материалов, а помимо этого предотвращает деформацию труб.
Отметим, что большая часть требований, содержащихся в нормативных документах, касается изоляции магистральных трубопроводов большой мощности. Но даже в случае монтажа бытовых систем, нелишним будет ознакомиться с ними и учитывать их при монтаже систем водоснабжения канализации своими силами.
Изоляция трубопроводов теплотрасс
Монтажные работы
Изоляция трубопроводов теплотрасс
Состав операций и средства контроля
Этапы работ |
Контролируемые операции | Контроль (метод, объем) | Документация |
Подготовительные работы | Проверить: — наличие документа о качестве; — качество материалов, изделий; — обработку поверхностей трубопроводов под изоляцию. |
Визуальный, измерительный, выборочно, не менее 5% изделий | Паспорта (сертификаты), акт приемки, акт испытания, общий журнал работ |
Изоляция трубопроводов | Контролировать: — качество противокоррозионной изоляции; — качество теплоизоляции; — крепление основного теплоизоляционного слоя бандажами или сетками; — качество покровного слоя. |
Визуальный, измерительный | Журнал работ, акт освидетельствования скрытых работ |
Приемка выполненных работ | Проверить: — качество выполнения изоляции; — соответствие материалов требованиям проекта, стандартов. |
Визуальный, измерительный | Акт приемки выполненных работ |
Контрольно-измерительный инструмент: линейка металлическая, щуп. | |||
Операционный контроль осуществляют: мастер (прораб). Приемочный контроль осуществляют: работники службы качества, мастер (прораб), лаборант, представители технадзора заказчика. |
Технические требования
СНиП 3.04.01—87 пп. 2.32, 2.34, 2.35, табл. 7
Допускаемые отклонения:
При устройстве теплоизоляции из жестких изделий, укладываемых насухо, необходимо обеспечивать:
— зазор между изделиями и изолируемой поверхностью не более 2 мм;
— ширину швов между изделиями не более 2 мм;
— крепление изделий — по проекту.
При устройстве теплоизоляции с применением мягких и полужестких волокнистых изделий необходимо обеспечивать:
— коэффициент уплотнения:
для полужестких изделий — не более 1,2; для мягких — не более 1,5;
— плотное прилегание изделий к изолируемой поверхности и между собой;
— перекрытие продольных и поперечных швов при изоляции в несколько слоев;
— установку на горизонтальных трубопроводах креплений от провисания теплоизоляции.
При устройстве покровных оболочек теплоизоляции необходимо обеспечить:
— плотное прилегание оболочек к теплоизоляции;
— надежное крепление при помощи крепежных изделий;
— тщательное уплотнение стыков гибких оболочек.
При устройстве антикоррозионного покрытия металлических труб необходимо проверять сплошность, сцепление с защищенной поверхностью, толщину.
Не допускаются:
— механические повреждения;
— провисание слоев;
— неплотное прилегание к основанию.
Требования к качеству применяемых материалов
ГОСТ 10296—79*. Изол. Технические условия.
ГОСТ 23307—78*. Маты теплоизоляционные из минеральной ваты вертикально слоистые. Технические условия.
ГОСТ 16381—77*. Материалы и изделия строительные теплоизоляционные. Классификация и общие технические требования.
ГОСТ 23208—83. Цилиндры и полуцилиндры теплоизоляционные из минеральной ваты на синтетическом связующем.
Изол должен быть гибким. При изгибании полоски изола марки И-БД при температуре минус 15 «С, марки И-ПД при температуре минус 20 «С на стержне диаметром 10 мм на полоске изола не должно появляться трещин. Изол должен быть температуроустойчивым. При нагревании в вертикальном положении в течение 2 часов при температуре 150 °С не должно наблюдаться увеличение длины и появление вздутий. Полотно изола должно быть намотано на жесткий сердечник диаметром не менее 60 мм, изготовленный из материала, обеспечивающий сохранность изола при его транспортировании и хранении. Длина сердечника должна быть равна ширине полотна или меньше ее не более чем на 10 мм. Торцы рулона изола, а также края полотен в стыке рулона должны быть ровно обрезаны. Полотно изола не должно иметь дыр, разрывов, складок, надрывов кромок, а также не переработанных частиц резины и посторонних включений. Нижняя поверхность полотна изола (внутренняя в рулоне) должна быть покрыта сплошным слоем пылевидной посыпки. Полотно изола не должно быть слипшимся.
Теплоизоляционные материалы и изделия должны удовлетворять следующим общим техническим требованиям:
— обладать теплопроводностью не более 0,175 Вт/(м К) при 25 «С;
— иметь плотность (объемную массу) не более 600 кг/м3;
— обладать стабильными физико-механическими и теплотехническими свойствами;
— не выделять токсические вещества и пыль в количествах, превышающих предельно допустимые концентрации.
Для тепловой изоляции оборудования и трубопроводов с температурой изолируемой поверхности свыше 100 °С должны применяться неорганические материалы.
Пенодиатомитовые и диатомитовые теплоизоляционные изделия должны иметь правильную геометрическую форму. Допускаемые отклонения от перпендикулярности граней и ребер не должны превышать 3 мм. В изделиях не допускаются дефекты внешнего вида:
— пустоты и включения шириной и глубиной более 10 мм;
— отбитости и притупленности углов и ребер глубиной более 12 мм идлиной более 25 мм;
— сквозные трещины длиной свыше 30 мм; изделия с трещинами свыше 30 мм считаются половняком.
Указания по производству работ
СНиП 3.04.01-87 пп. 1.3, 2.1, 2.8-2.9, 2.32, 2.33,
СНиП 3.05.03-85 пп. 6.1, 6.2
Теплоизоляционные работы могут начинаться только после оформления акта (разрешения), подписанного заказчиком и представителями монтажной организации и организации, выполняющей теплоизоляционные работы.
Изоляционные работы допускается выполнять при положительных температурах (до 60 °С) и отрицательных (до -30 °С).
Поверхности трубопроводов перед изоляцией должны быть очищены от ржавчины, а подлежащие антикоррозионной защите обработаны в соответствии с требованиями проекта. Теплоизоляционные работы на трубопроводах должны начинаться только после их постоянного закрепления. Изоляцию трубопроводов, расположенных в непроходных каналах и лотках, необходимо выполнять до их прокладки.
При температуре теплоносителя до 140 °С для зашиты наружной поверхности труб тепловых сетей от коррозии применяется покрытие из изола в два слоя на мастике изол. Общая толщина покрытия 5—6 мм. Для воздушной теплосети с температурой теплоносителя до 140 «С для защиты поверхности труб от коррозии применяются покрытия комбинированные краской БТ-177 по грунтовке ГФ-020. Общая толщина покрытия 0,15— 0,20 мм.
Для проверки качества работ по наклейке противокоррозионной защиты делают надрез до металла на участке размером 200 х 200 х 200. Качество считается удовлетворительным, если изоляция отделяется от трубы с некоторым усилием. Такой проверке на отрыв подвергается 5% труб.
Закрепление теплоизоляции на трубопроводах следует производить бандажами. Для зашиты основного слоя теплоизоляции от увлажнения, механических повреждений необходимо применять покровные оболочки из жестких или гибких (неметаллических) материалов.
Монтаж теплоизоляционных изделий необходимо начинать от фланцевых соединений и фасонных частей и проводить в направлении, противоположном уклону.
При промежуточной проверке осматривают поверхности, подготовленные под тепловую изоляцию, при многослойной теплоизоляции проверяют каждый слой до нанесения следующего. При окончательной проверке теплоизоляции определяют равномерность толщины изоляции по всей длине прямого и обратного трубопровода.
Толщину изоляции проверяют щупом. Особенно внимательно нужно следить за дозировкой цемента и асбеста при защите изоляции асбесто-цементным раствором. Избыток цемента в асбоцементной массе приводит после ее затвердения и нагрева к растрескиванию.
Материалы для тепловой изоляции трубопроводов
В настоящий момент на рынке предлагается большой выбор материалов, которые могут использоваться для изоляции трубопроводов. Каждый из них имеет свои преимущества и недостатки, а кроме этого и особенности применения. Для правильного выбора теплоизолятора необходимо все это знать.
Полимерные утеплители
Когда стоит задача создать эффективную систему теплоизоляции трубопроводов, чаще всего внимание обращают на полимеры на вспененной основе. Большой ассортимент позволяет подобрать подходящий материал, благодаря которому можно обеспечить эффективную защиту от внешней среды и исключить потери тепла.
Если говорить более подробно о полимерных материалах, то из доступных на рынке можно выделить следующие.
Пенополиэтилен.
Главной характеристикой материала является невысокая плотность. Кроме того, он пористый и обладает высокой механической прочностью. Этот утеплитель применяют для изготовления цилиндров с разрезом. Их монтаж могут выполнить даже люди, далекие от сферы теплоизоляции трубопроводов. Однако, для этого материала характерен один недостаток: конструкции, выполненные из пенополиэтилена, обладают быстрым износом и вдобавок к этому имеют слабую термостойкость.
Если для тепловой изоляции трубопроводов выбраны цилиндры из пенополиэтилена, то особое внимание необходимо обращать на их диаметр. Он должен соответствовать диаметру коллектора. Учитывая это правило при выборе конструкции утепления, можно исключить самопроизвольное снятие кожухов из пенополиэтилена.
Пенополистирол.
Главной особенностью этого материала является эластичность. Также для него характерны высокие показатели прочности. Защитные изделия для теплоизоляции трубопроводов из этого материала выпускают в виде сегментов, которые своим видом напоминает скорлупу. Специальные замки используются для соединения деталей. Они имеют шипы и пазы, благодаря которым обеспечивается быстрота монтажа этих изделий. Использование скорлупы из пенополистирола с техническими замками исключает возникновение после монтажа «мостиков холода». Кроме этого, при установке нет необходимости в использовании дополнительного крепежа.
Пенополиуретан.
Этот материал применяют главным образом для предустановленной тепловой изоляции трубопроводов тепловых сетей. Однако использовать его можно и для утепления бытовых систем трубопроводов. Этот материал выпускается в виде пены или скорлупы, которая состоит из двух или четырех сегментов. Утепление методом напыления обеспечивает надежную теплоизоляцию с высокой степенью герметичности. Применение такого утепления наиболее подходит для систем коммуникаций, отличающихся сложной конфигурацией.
Используя для теплоизоляции трубопроводов тепловых сетей ППУ в виде пены, необходимо знать о том, что она разрушается под воздействием ультрафиолетовых лучей. Поэтому, чтобы изоляционный слой прослужил долго, необходимо обеспечить его защиту. Для этого поверх пены наносят слой краски или укладывают нетканое полотно с хорошей проницаемостью.
Волокнистые материалы
Утеплители этого типа представлены в основном минеральной ватой и ее разновидностями. В настоящий момент среди потребителей они наиболее популярны в качестве утеплителя. Материалы этого типа также хорошо востребованы, как и полимерные материалы.
Для тепловой изоляции, выполняемого с применением волокнистых утеплителей, характерны определенные преимущества. К таковым можно отнести следующие:
- незначительный коэффициент теплопроводности;
- стойкость теплоизоляционного материала к воздействию таких агрессивных веществ, как кислоты, щелочи, масло;
- материал в состоянии без дополнительного каркаса поддерживать заданную форму;
- стоимость утеплителя довольно приемлемая и доступна для большинства потребителей.
Обращаем внимание, что во время работ по тепловой изоляции трубопроводов такими материалами необходимо исключить сжимание волокна при укладке утеплителя. Также важно обеспечить защиту материала от воздействия влаги.
Изготавливаемые из полимерных и минераловатных утеплителей изделия для тепловой изоляции в некоторых случаях могут покрываться фольгой из алюминия или стали. Использование таких экранов обеспечивает снижение рассеивания тепла.
Разновидности утеплительных материалов
Теплоизоляция труб отопления осуществляется после приобретения материала, но до этого момента необходимо узнать о характеристиках и преимуществах утеплителя, а также области его применения. После этих данных удастся подобрать наиболее подходящий и эффективный вариант.
Пенополиуретан
Данный утеплитель состоит из ребер и стенок, которые образуют цельную конструкцию твердой формы. Он создает теплоизоляционную скорлупу, которая обладает высоким уровнем прочности, при этом достаточно эффективно удерживая тепло внутри отопительной сети. Пенополиуретан обладает такими положительными качествами:
- не имеет запаха и не является токсичным;
- не поддается гниению;
- он экологически безвреден для организма человека;
- имеет превосходные диэлектрические качества;
- материал устойчив к разному роду климатических воздействий, благоприятно подходя для использования вне помещения;
- достаточно крепкий утеплитель, исключающий возможность поломок трубопровода под воздействия механических нагрузок снаружи.
Его единственным ощутимым недостатком является высокая стоимость.
Минвата
Обладая существенным уровнем эффективности, является довольно востребованной среди теплоизоляторов. Она состоит из минеральной ваты, и имеет ряд своих особенностей:
- вата обладает низким поглощением влаги, благодаря обработке специальными составами в процессе изготовления;
- высокая степень термоустойчивости, что при нагреве обеспечивает сохранение теплоизоляционных и механических параметров на первичном уровне;
- является экологически безвредной, не содержа в составе токсических веществ;
- ей не страшны воздействия со стороны кислот, растворителей и других химических растворов.
Минеральная вата отлично подходит для использования в качестве теплоизолятора для труб отопительных сетей. Она довольно часто устанавливается на трубопроводах, что подвергаются беспрерывному нагреву большой силы.
Вспененный полиэтилен
Не наносит вреда человеческому организму. Он не боится существенных перепадов температур и является устойчивым к воздействию влаги. Утеплитель достаточно популярен среди покупателей. Имеет форму трубки с конкретной толщиной, в которой проделан надрез. Используется в качестве теплоизоляционного материала для труб отопительной сети, а еще при утеплении теплого и холодного водопровода.
Он сберегает свои свойства при использовании совместно с другими стройматериалы, среди которых бетон, известь и прочие.
Пенофол
Этот утеплитель для труб отопления появился на рынке совсем недавно, являясь отражающим теплоизолятором, который состоит из фольги из алюминия и ячеистого полиэтилена. Благодаря 2-м слоям материал обладает превосходными тепловыми показателями, из-за чего он довольно востребован среди покупателей. Фольгоизол имеет ряд особенностей:
- довольно легкий монтаж, не требующий специальных средств защиты;
- он экологически безвредный, не выделяющий токсичных веществ;
- обладает продолжительным сроком службы;
- имеет широкую сферу использования, подходя для применения как внутри помещения, так и снаружи.
Пенофол распространяется в рулонах с разнообразным уровнем плотности полиэтиленового слоя. При выборе толщины следует отталкиваться от будущих условий использования теплоизолятора. Двойной слой способствует удерживанию тепла в закрытом пространстве, достигая максимально допустимой эффективности.
Многослойные конструкции для защиты трубопроводов
Нередко для утепления трубопроводов устраивается теплоизоляция по методу «труба в трубе». При использовании этой схемы выполняется монтаж теплозащитного кожуха. Главная задача специалистов, осуществляющих монтаж такого контура, заключается в том, чтобы правильно соединить все детали в единую конструкцию.
По завершении работы получается конструкция, которая выглядит следующим образом:
- в качестве основы теплозащитного контура выступает труба из металла или полимерного материала. Она является несущим элементом всего устройства;
- из вспененного ППУ выполнены теплоизоляционные слои конструкции. Нанесение материала производится по заливной технологии, расплавленной массой заполняется специально созданная опалубка;
- защитный кожух. Трубы из оцинкованной стали или полиэтилена используются для его изготовления. Первые служат для прокладки сетей на открытом пространстве. Вторые применяются в тех случаях, когда системы трубопроводов прокладываются в грунте по безканальной технологии. Кроме этого, часто при создании такого типа защитного кожуха в утеплитель на основе пенополиуретана закладываются медные проводники, основным предназначением которых является дистанционный контроль состояния трубопровода, в том числе и целостности слоя теплоизоляции;
- если на место монтажа трубы поступают в собранном виде, то для их соединения используют метод сварки. Специальные термоусадочные манжеты специалисты применяют для сборки теплозащитного контура. Или же могут использоваться накладные муфты, изготовленные на основе минеральной ваты, которые покрыты слоем фольги.
О толщине изоляции трубопровода и оборудования
Обязательно опираться на нормативы, чтобы определить допускаемую толщину для каждого конкретного оборудования. В них производители пишут о том, какая плотность сохраняется в тепловом потоке. В СНиПах приводятся алгоритмы решения разных формул вместе с самими формулами.
Видео
Для выявления минимума толщины трубопроводов в том или ином случае определяют предел по допустимым значениям потерь на тех или иных участках.
Полиуретановая изоляция
Трубопроводы с данным типом изоляции используются, когда надо укладывать конструкцию над поверхности земли, бесканального типа. При изготовлении стараются внедрить как можно больше новых технологий.
Из материалов к процессу допускаются только обладающие максимально высоким качеством. Заблаговременно их подвергают испытаниям в большом количестве, согласно СП, тепловая изоляция оборудования и трубопроводов не допускает брака.
Использование пенополиуретана позволяет снижать тепловые потери. И обеспечивает долговечность для самого материала теплоизоляции. В состав пенополиуретана входят экологически чистые компоненты. Это Изолан-345, а так же Воратек CD-100. По сравнению с минеральной ватой, теплоизоляционные характеристики пенополиуретана гораздо выше.
ППМ и АПБ изоляция
На протяжении более чем тридцати лет в трубопроводах используется так называемая пенополименарльная изоляция. Основным видом в данном случае выступает полимербетон. Его характеристики можно описать следующим образом:
- Включение в группу Г1 при испытаниях на горючесть согласно действующим ГОСТам.
- Температурный режим эксплуатации, позволяющий поддерживать 150 градусов.
- Наличие структуры интегрального типа, которая совмещает в себе функции покрытия для гидроизояции вместе со слоем изоляции от тепла.
Некоторые региональные производители до недавнего времени занимались выпуском армопенобетонной изоляцией. У этого материала очень низкая плотность. А теплопроводность, наоборот, приятно удивляет.
Видео
АПБ обладает следующим набором преимуществ:
- Долговечность.
- Гидрозащитное покрытие с высокой паропроницаемостью.
- Оборудование не подвергается коррозии.
- Способность трубопровода выдерживать высокие температуры.
- Сопротивляемость огню.
Такие трубы хороши тем, что их можно применять для теплоносителя практически любой температуры. Это касается как сетей не только с водой, но и с паром. Вид прокладки не имеет значения.
Допустимо даже совмещение с подземной бесканальной и канальной разновидностями. Но продукция с ППУ теплоизоляцией всё ещё считается более технологичным решением.
О коэффициенте теплопроводности
Оборудование, пока оно эксплуатируется, становится возможным увлажнение – вот что больше всего влияет на расчётный коэффициент теплопроводности.
Видео
Особые правила существуют для принятия коэффициента, который предполагает увеличение теплопроводности изоляционных покрытий. Основываются при этом на ГОСТах и СНиПах, но не обойтись и без других факторов:
- влажность грунта согласно СП.
- Разновидности, к которой относится материал для теплоизоляции.
Коэффициент равняется единице, если речь идёт о трубах с ППУ-изоляцией, в оболочке из полиэтилена высокой плотности. Не важно, каков уровень влажности в грунте, где установлено оборудование. Другим будет коэффициент у оборудования и труб с изоляцией АПБ, имеющих интегральную структуру. И допускающих возможность того, что изоляционный слой может высохнуть.
- 1,1 – уровень коэффициента для конструкций, размещённых в грунтах с большим количеством воды, согласно СП.
- 1,05 – для грунтов, где количество воды не такое большое.
При практических расчётах используются специальные инженерные методики. Они обычно учитывают сопротивления внешним воздействиям из окружающей среды. Двухтрубная прокладка предполагает учёт взаимного теплового влияния каждого из элементов на другие.
Одним из определяющих факторов при выборе подходящей толщины становится фактор стоимости. А данные показатели могут определяться индивидуально для каждого конкретного региона.
Видео
Есть и другие параметры, которые имеют значения. Вроде расчётной температуры теплоносителя. Важно и то, на каком уровне находится температура в окружающей среде.
Устройство тепловой изоляции трубопроводов своими руками
Есть ряд факторов, от которых может зависеть технология создания теплоизоляционного слоя на трубопроводах. Одним из самых важных является то, как прокладывается коллектор — снаружи или его монтаж выполняется в земле.
Утепление подземных сетей
Для решения задачи по обеспечению теплозащиты заглубленных коммуникаций работы по утеплению проводятся в следующем порядке:
- сначала канализационные лотки укладываются на дно траншеи;
- после этого поверх них выполняется прокладка труб, после чего приступают к герметизации соединений между ними;
- далее на трубы надеваются кожухи, а потом конструкция оборачивается при помощи паронепроницаемой стеклоткани. Для фиксации материалов используются хомуты из полимерных материалов;
- далее лоток закрывается крышкой, после этого засыпается грунтом. В зазор между ним и траншеей выполняется укладка песчано-глиняной смеси с последующей тщательной утрамбовкой;
- если лотки отсутствуют, то трубы укладываются на уплотненный грунт с подсыпкой песчано-гравийной смесью.
Изоляция трубопроводов горячего и холодного водоснабжения, тепловых сетей, газопроводов
Изоляция трубопроводов — это очень важное мероприятие, которое выполняется для защиты коммуникации от явлений окружающей среды, предотвращения тепловых потерь и т. д.
Трубопроводы для разных целей отличаются по материалу, поэтому каждый тип трубопровода требует свой вид изоляционного материала.
Обратите внимание
Изоляция различных коммуникаций не только предохраняет их от внешних воздействий, но и увеличивает эффективность, а также эксплуатационный срок магистрали.
Меры по изоляции трубопроводов проводятся с целью утепления, защиты от влаги и ультрафиолета, а также от повреждений, которые могут нанести животные или люди
Материалы для изоляции трубопроводов горячего водоснабжения
Коммуникации, транспортирующие горячую воду, требуют организации изоляции, которая отличается низким коэффициентом теплопроводности. Это необходимо чтобы снизить показатели теплопотери труб. Без правильной теплоизоляции трубопровод будет рассеивать тепло в окружающую среду, показывая низкую эффективность.
Рассмотрим, какими видами изоляционных материалов можно защитить трубопровод, транспортирующий горячую воду:
- пенополимерминеральная трубная изоляция (ППМ) — это изоляционный материал, получаемый в результате смешивания вспененного пенополиуретана и минерального наполнителя.
ППМ изоляция применяется, как правило, только для трубопроводов горячего водоснабжения. Состоит ППМ изоляция из трёх основных слоёв, имеющих разную плотность.
ППМ изоляция является многофункциональной защитной конструкцией, так как каждый из её слоёв выполняет свою функцию: защита от коррозии, теплоизоляция и гидроизоляция.
Такая монолитная конструкция резистентна к температурным перепадам, а также отличается хорошей прочностью, что позволяет защищать трубопроводную конструкцию от механических воздействий.
Полезная информация! Изоляция трубопроводов может быть как внешней, так и внутренней. Внутренняя изоляция труб выполняет две основные функции: защита трубы от коррозийных воздействий и увеличение пропускной способности магистрали.
- пенополиуретан (ППУ). Этот материал используется преимущественно для того, чтобы усилить гидроизоляционные показатели коммуникации. Отличается хорошей термоустойчивостью и способен выдерживать температурные скачки. Кроме этого, стоит отметить, что теплопотери при организации изоляции из пенополиуретана составляют не более 5%.
- весьма усиленная изоляция (ВУС). Это особый тип изоляции, который состоит из двух или трёх слоёв и используется для защиты трубопроводной коммуникации от губительного воздействия коррозии. А также стоит сказать, что ВУС имеет устойчивость к низким температурам и может использоваться в неблагоприятных климатических условиях.
Весьма усиленная изоляция используется для защиты магистралей, работающих в сложных климатических условиях
Материалы для изоляции трубопроводов, транспортирующих холодную воду
Для изоляции коммуникаций, которые транспортируют холодную воду, используются следующие виды изоляторов:
- утеплитель на основе базальтового волокна. Такая трубная изоляция имеет разнообразные размеры и выпускается в форме цилиндра. Основное преимущество такого утеплителя состоит в том, что для монтажа трубопровода не требуются специальные лотки, а также такая изоляция является наиболее эффективной для коммуникаций, транспортирующих холодную воду. Кроме этого, организация базальтовой изоляции не требует никаких специальных строительных навыков и отличается высокой скоростью.
- вспененный каучук (ВК). Этот материал имеет прекрасные гидроизоляционные свойства, а также способен переносить температурные колебания. Имеет пористую структуру закрытого типа. Как правило, такой изолятор выпускается в форме трубок или пластин. А также стоит отметить, что вспененный каучук является пожароустойчивым материалом и в случае возгорания отличается самозатухаемостью.
- минеральные маты. Производятся из минеральной ваты и используются для утепления трубопроводов большого диаметра. В зависимости от конструктивных особенностей выделяют три вида минеральных матов: прошивные, фольгированные, ламельные.
- стекловолокно. Этот материал не является самодостаточным и используется только в комбинации с другими изоляторами (например, со стеклотканью). Как правило, вместо этого материала применяют стекловолоконные маты. Монтаж стекловолоконных матов производится таким способом: сначала трубопровод обматывают матами, затем их фиксируют с помощью обычной проволоки и, наконец, полученная конструкция обматывается полиэтиленом. Этот метод считается неудобным и трудозатратным, однако, такая теплоизоляция хорошо себя зарекомендовала и является довольно эффективной.
- вспененный полиэтилен (ВПЭ). Производится такой изолятор в виде трубок, которые имеют продольный разрез. Монтаж трубок из ВПЭ отличается простотой и высокой скоростью. ВПЭ — экологически чистый материал, который способен переносить температурные колебания, а также является резистентным к агрессивным химическим веществам. Использование ВПЭ позволяет исключить возникновение грибков и плесени.
Цилиндры из вспененного полиэтилена применяют для изоляции холодных трубопроводов в быту и промышленности
- пенополиуретановое (ППУ) напыление. Этот метод, с финансовой точки зрения, наиболее дорогостоящий, однако, и самый эффективный, если сравнивать его с остальными вариантами теплоизоляции труб. Для нанесения ППУ на трубу используют специальные распылители. После контакта с воздухом пенополиуретан застывает и образует плотное защитное покрытие, которое имеет высокую устойчивость к низким температурам.
Полезная информация! Стоит отметить, что зачастую после монтажа пенопластовой скорлупы, поверх наносят дополнительную гидроизоляцию. В качестве такой гидроизоляции может выступать обычный полиэтилен.
- пенопласт. Изготавливаются пенопластовые изоляторы в виде специальной скорлупы, которая легко надевается на трубу. Этот материал является наиболее распространённым из-за простоты установки. Пенопластовая скорлупа может иметь покрытие или изготавливаться без него.
- жидкая изоляция для труб. Это довольно специфичный способ защиты труб от низких температур. Используется такой вариант теплоизоляции довольно редко. В основе метода лежит нанесение на трубу специальной термоустойчивой краски.
Изоляция теплосетей
Для изоляции тепловых сетей, задача которых заключается в доставке тепла от котельных до потребителей, используются разные изоляционные материалы. В первую очередь перед такими материалами стоит задача по снижению коэффициента теплопотери. Теплосети транспортируют две основные рабочие среды:
Изоляция тепловых (водяных и паровых) сетей производится с использованием следующих материалов:
- минеральная вата. Является довольно распространённым теплоизолятором, который имеет низкий коэффициент теплопроводности, а также устойчив к воспламенению. Свойства минваты позволяют ей быть довольно популярным материалом для теплоизоляции трубопроводных конструкций, транспортирующих тепло. Из минусов этого материала можно выделить высокую стоимость.
Изоляционный материал для систем ГВС и паропроводов должен быть таким, чтобы свести возможные теплопотери к минимуму
- пенополиуретан (ППУ). Отличительные черты этого материала — низкая теплопроводность и высокий коэффициент гидроизоляции.
- пенополистирол (ППС). Этот материал является, по сути, тем же пенопластом и отличается простотой монтажа на трубопровод. Кроме этого, стоит отметить, что стоимость пенополистирола довольно низкая.
- вспененный полиэтилен (ВПЭ). Трубчатый материал, который занимает лидирующие позиции среди изоляторов для теплосетей.
- теплоизоляционная краска. Как уже говорилось выше, такой материал наносится на трубы с помощью специальных распылителей и отличается высокими защитными характеристиками.
Изоляция газопроводов
Для изоляции труб, транспортирующих газ, используют различные варианты изоляторов. Например, можно выполнить теплоизоляцию газопровода с помощью специальной краски или лака, но в большинстве случаев используются современные защитные материалы.
Каким требованиям должен отвечать изолятор для газовых труб:
- в первую очередь изолятор для газопровода должен иметь возможность равномерного, монолитного монтажа на трубу;
- а также очень важно, чтобы изоляционный материал для трубопровода обладал низким коэффициентом водопоглощения и в целом высокими гидроизоляционными свойствами;
Важно! Изоляционный материал должен предохранять трубу от воздействия ультрафиолетового излучения, так как ультрафиолетовые лучи являются разрушающим фактором.
Материал для изоляции газовых труб должен иметь высокие показатели влагостойкости
- также качественный защитный материал должен отличаться высокой резистентностью к коррозийным воздействиям и воздействию любых других агрессивных химических соединений;
- изолятор должен быть довольно прочным, чтобы защищать газопровод от механических воздействий;
- покрытие не должно иметь никаких повреждений (трещины, сколы и т. д.).
Рассмотрим основные виды и типы изоляции газопроводов:
- битумные мастики. Такие теплоизоляторы производятся с разными добавками, которые подмешиваются к основному материалу — битуму. Добавки могут быть трёх видов:
- Полимерные.
- Минеральные.
- Резиновые.
Такие добавки обеспечивают защиту от появления трещин и, кроме этого, улучшают сцепление с поверхностью газовой трубы. А также стоит отметить, что битумные мастики хорошо зарекомендовали себя при низких температурах.
- ленточные материалы. Изоляционные ленты, как правило, выполняются из полиэтилена или поливинилхлорида (ПВХ). На одну из сторон такой ленты на стадии производства наносят клейкий материал, посредством которого происходит монтаж ленты на газопровод.
В зависимости от конструктивных особенностей трубопровода и региона, в котором он прокладывается, используются следующие типы ленточной изоляции:
- Обычная.
- Усиленная (УС).
- Весьма усиленная (ВУС).
Для защиты газопроводов сегодня часто используют ленточную изоляцию, которая наматывается на трубы при помощи специального приспособления
Последний тип изоляции наиболее надёжный и эффективный и используется чаще всего для защиты трубопроводов в населённых пунктах. ВУС устойчива к агрессивным коррозийным воздействиям и активным химическим веществам.
Производится ВУС с помощью метода экструзии. Изоляция трубы экструдированным полиэтиленом проводится для увеличения защитных функций трубопровода.
Изоляция труб экструдированным полиэтиленом — это очень надёжный вариант защиты.
Экструдируемые ленты обладают отличными гидроизоляционными показателями и устанавливаются на трубы, которые прокладываются даже в неблагоприятных климатических условиях.
Изоляция подземного газопровода
Изоляция газопровода, расположенного под землёй необходима для предотвращения возникновения коррозии труб (из-за влаги в почве). Кроме этого, стоит отметить, что изоляция газовых труб необходима и для защиты коммуникации от блуждающих токов.
Обратите внимание! Блуждающие токи возникают в случае, если газопровод проходит неподалёку от автомобильных и железных дорог. А также блуждающие токи могут возникать в почве из-за проложенных в ней силовых кабелей.
Блуждающие токи пагубно воздействуют на стенки газопровода, что приводит к их быстрому износу и разрушению.
Особенно легко поддаются разрушению от таких токов стальные трубы, которые могут прийти в негодность за год эксплуатации, в таких случаях обязательно необходима изоляция стальных подземных газопроводов.
В противном случае может возникнуть утечка газа, что может привести к серьёзным последствиям.
Важно
Для подземных газопроводов чаще используются трубы с заводской изоляцией, например, из пенополиуретана
Для изоляции подземных газопроводов идеально подходит пенополиуретан (ППУ). Стоит отметить, что существует два основных способа нанесения изоляции на газовые трубы:
- предварительная трубная изоляция (нанесение изолятора на трубу в заводских условиях);
- монтаж изоляционного материала после прокладки коммуникации.
Труба, изолированная пенополиуретаном на стадии производства, считается более надёжным и долговечным решением. Для того чтобы обеспечить хорошую гидроизоляцию трубы верхний слой защитной оболочки представлен, как правило, полиэтиленом.
А также стоит отметить ещё одно важное достоинство такой изоляции — возможность организации электронного контроля за газовой трубой.
Это очень полезная функция, которая позволяет моментально выявить неисправность в магистрали. Кроме всего прочего, стоит отметить, что такие трубы отличаются довольно демократичной ценой.
Все вышеперечисленные достоинства позволили трубам с ППУ изоляцией занять лидирующие позиции на строительном рынке.
Источник: http://TrubaMaster.ru/vodoprovodnye/izolyaciya-truboprovodov.html
Поэтапная изоляция трубопроводов
Теплоизоляция трубопроводов — это комплекс мероприятий, направленных на то, чтобы воспрепятствовать теплообмену транспортируемого по ним носителя с окружающей средой.
Тепловая изоляция трубопроводов применяется не только в системах отопления и поставки горячей воды, но и там, где по технологии требуется транспортировка веществ с какой-то определенной температурой, например, хладагентов.
Смысл теплоизоляции – использование средств, оказывающих термическое сопротивление теплообмену любого рода: контактному и осуществляемому посредством инфракрасного излучения.
Наибольшее применение, выраженное в числах, имеет тепловая изоляция трубопроводов тепловых сетей. В отличие от Европы, централизованная система отопления господствует на всем постсоветском пространстве. Только в одной лишь России суммарная протяженность теплосетей составляет более 260 тыс. километров.
Совет
Значительно реже изоляция для труб отопления находит применение у частных домовладений, имеющих автономную систему отопления. Лишь в нескольких северных регионах частные дома подключаются к центральной теплотрассе с размещением труб отопления на улице.
Некоторым типам котлов, к примеру, мощным газовым или дизельным, требованиями свода правил СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов» предписано отдельное от здания размещения – в котельной, отстоящей от обогреваемого объекта на несколько метров. В их случае фрагмент обвязки, проходящий через улицу, обязательно нуждается в утеплении.
Способы прокладки труб
На улице изоляция трубопроводов отопления требуется и при открытом наземном размещении, и при скрытой прокладке – под землей.
Последний способ бывает канальным – в траншею сперва укладывается железобетонный желоб, а в нем уже размещаются трубы. Бесканальный способ размещения – непосредственно в грунте.
Применяемые изоляционные материалы различаются не только по теплопроводности, но и паро-, водонепроницаемости, долговечности и способам монтажа.
Не столь очевидна необходимость утепления труб холодного водоснабжения. Однако без нее не обойтись в том случае, когда водопровод проложен открытым наземным способом — трубы требуется защищать от промерзания и последующего повреждения. Но и внутри зданий изолировать трубы водопровода тоже приходится –- для предотвращения конденсации влаги на них.
Стекловата, минеральная вата
Проверенные практикой эксплуатации изоляционные материалы. Отвечают требованиям СП 61.13330.2012, СНиП 41-03-2003 и нормам пожарной безопасности при любом способе прокладки. Представляют собой волокна диаметром 3-15 мкм, по структуре близкие к кристаллам.
Стекловата изготавливается из отходов стекольного производства, минвата из кремнийсодержащих шлаков и силикатных отходов металлургии. Различия их свойств незначительны. Выпускаются в виде рулонов, прошивных матов, плит и опрессованных цилиндров.
С материалами важно соблюдать осторожность и уметь правильно обращаться. Любые манипуляции должны выполняться в защитном комбинезоне, перчатках и респираторе.
Монтаж
Трубу оборачивают или обкладывают ватой, обеспечивая равномерную плотность заполнения по всей поверхности. Затем изоляцию, не слишком передавливая, фиксируют с помощью вязальной проволоки.
Материал гигроскопичен и легко намокает, поэтому изоляция наружных трубопроводов из минеральной или стеклянной ваты требует установки пароизоляционного слоя из материала с низкой паропроницаемостью: рубероида или полиэтиленовой пленки.
Поверх него размещается покровный слой, препятствующий проникновению осадков – кожух из кровельной жести, оцинкованного железа или листового алюминия.
Базальтовая (каменная) вата
Более плотная, чем стекловата. Волокна изготавливаются из расплава габбро-базальтовых пород. Абсолютно негорюча, кратковременно выдерживает воздействие температур вплоть до 900° C. Далеко не любые изоляционные материалы могут как базальтовая вата длительно контактировать с поверхностями, нагретыми до 700°С.
Теплопроводность сопоставима с полимерами, варьируется от 0,032 до 0,048 Вт/(м·K). Высокие эксплуатационные показатели позволяют использовать ее теплоизоляционные свойства не только для трубопроводов, но и при обустройстве горячих дымоходов.
Выпускается в нескольких вариантах:
- как и стекловата, рулонами;
- в форме матов (прошитых рулонов);
- в виде цилиндрических элементов с одной продольной прорезью;
- в виде прессованных фрагментов цилиндра, так называемых скорлуп.
Последние два исполнения имеют разные модификации, отличающиеся плотностью и наличием теплоотражающей пленки. Прорезь цилиндра и края скорлуп могут быть выполнены в виде шипового соединения.
СП 61.13330.2012 содержит указание о том, тепловая изоляция трубопроводов обязана соответствовать требованиям безопасности и защиты окружающей среды. Сама по себе базальтовая вата этому указанию соответствует в полной мере.
Производители часто прибегают к хитрости: чтобы улучшить потребительские показатели – придать ей гидрофобность, большую плотность, паропроницаемость они используют пропитки на основе фенолоформальдегидных смол. Поэтому 100% безопасной для человека ее назвать нельзя. Перед применением базальтовой ваты в жилом помещении желательно изучить ее гигиенический сертификат.
Монтаж
Волокна утеплителя прочнее, чем у стекловаты, поэтому попадание его частиц в организм через легкие или кожу почти исключено. Однако при работах все же рекомендуется использовать перчатки и респиратор.
Монтаж рулонного полотна не отличается от того способа, каким осуществляется изоляция труб отопления стекловатой. Теплозащита в виде скорлуп и цилиндров крепится на трубы с помощью монтажного скотча или широкого бандажа.
Несмотря на некоторую гидрофобность базальтовой ваты, на изолированные с ее помощью трубы также требуется гидрозащитная паропроницаемая оболочка из полиэтилена или рубероида, и дополнительная, из жести либо плотной алюминиевой фольги.
Вспененный полиуретан (пенополиуретан, ППУ)
Более чем в два раза сокращает тепловые потери по сравнению со стекловатой и минеральной ватой. К числу его преимуществ относят: низкую теплопроводность, отличные гидроизоляционные свойства. Заявляемый производителями срок службы – 30 лет;. Диапазон рабочей температуры от -40 до +140 °С, максимальная выдерживаемая в течении короткого времени – 150 °С.
Основные марки ППУ относятся к группе горючести Г4 (сильногорючие). При изменение состава с помощью добавки антипиренов им присваивается Г3 (нормальногорючие).
Хотя пенополиуретан отлично подходит как изоляционный материал для труб отопления, имейте ввиду, что СП 61.13330.2012 разрешает применение подобной теплоизоляции только в одноквартирных жилых домах, а СП 2.
13130.2012 ограничивает их высоту двумя этажами.
Теплоизоляционное покрытие выпускается в виде скорлуп – полукруглых сегментов со шпунтовыми замками на торцах. В продаже имеются и готовые стальные трубы в изоляции из пенополиуретана с предохраняющей оболочкой из полиэтилена.
Монтаж
Скорлупы закрепляются на отопительной трубе с помощью стяжек, хомутов, пластикового или металлического бандажа. Как и многие полимеры, материал не переносит длительного воздействия солнечного света, поэтому открытый наземный трубопровод при использовании ППУ-скорлуп нуждается в покровном слое, к примеру, из оцинкованной стали.
Для подземного бесканального размещения теплоизоляционные изделия укладывают на водостойких и температусточивых мастиках либо клеях, а снаружи изолируют водонепроницаемым покрытием.
Необходимо также позаботиться об антикоррозионной обработке поверхности металлических труб – даже проклеенное замковое соединение скорлуп недостаточно плотно, чтобы предотвратить конденсацию водяного пара из воздуха.
Пенополистирол (пенопласт, ППС)
Выпускается в виде скорлуп, внешне практически не отличающихся от пенополиуретановых – те же размеры, такое же замковое соединение «шип-паз». Но диапазон температуры применения, от -100 до +80 °С, при всей этой внешней схожести делает невозможным или ограниченным его применение для тепловой изолировки трубопровода отопления.
В СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» указано, что в случае двухтрубной системы теплоснабжения максимальная температура подачи может достигать 95°С. Что же касается обратных стояков отопления, то здесь не все так однозначно: считается, что в них температура не превышает 50 °С.
Утепление пенопластом чаще используется для труб холодного водопровода и канализации. Однако он может быть использован поверх других утеплителей с более высокой допустимой температурой применения.
Обратите внимание
Материалу присущ ряд некоторых недостатков: сильногорюч (даже с добавкой антипиренов), плохо переносит химические воздействия (растворяется в ацетоне), осыпается шариками при длительном воздействии солнечного излучения.
Существуют и другие, не полистирольные пенопласты – формальдегидные, или коротко, фенольные. По сути это совершенно другой материал. Он лишен указанных недостатков, успешно применяется как теплоизоляция трубопроводов, но не настолько широко распространен.
Монтаж
Скорлупы закрепляются на трубе с помощью бандажа либо фольгированным скотчем, допускается приклеивание их к трубе и между собой.
Вспененный полиэтилен
Диапазон температур, при которых допускается применение вспененного полиэтилена высокого давления, от -70 до +70 °С. Верхняя граница не сочетается с максимальной температурой трубы отопления, обычно принимаемой при расчетах. Это значит, что как тепловая изоляция трубопроводов материал малопригоден, но может использоваться в роли изолирующего слоя поверх жаростойкого.
Пенополиэтиленовая изоляция нашла практически безальтернативное применение в качестве защиты от промерзания труб водопроводных. Очень часто она используется как пароизоляция и гидроизоляция.
Выпускается материал в виде листов либо в виде гибкой толстостенной трубы. Последняя форма чаще применяется, так как более удобна для утепления водопровода. Стандартная длина – 2 метра. Цвет варьируется от белого до темно-серого. Возможно наличие покрытия из алюминиевой фольги, отражающей ИК излучение. Различия касаются внутренних диаметров (от 15 до 114 мм), толщины стенок (от 6 до 30 мм).
Применение обеспечивает температуру на трубе выше точки росы, а значит препятствует появлению конденсата.
Монтаж
Простой путь с худшими пароизоляционными результатами – разрезать пенистый материал по небольшому углублению вдоль боковой поверхности, раскрыть кромки и одеть на трубу. Затем обмотать по всей длине монтажным скотчем.
Более сложное решение (и далеко не всегда осуществимое) – перекрыть воду, полностью разобрать утепляемые участки водопровода и надеть цельные отрезки. Затем собрать все обратно. Полиэтилен закрепить стяжками. В этом случае уязвимым местом станется только стык отрезков. Его можно склеить либо также замотать скотчем.
Вспененный каучук
Вспененный синтетический каучук с закрытопористой структурой – наиболее универсальный материал для сохранения тепла и холода. Рассчитан на диапазон температур от -200 до +150 °С. Соответствует всем требованиям экологической безопасности.
Применяется как изоляция трубопроводов холодной воды, изоляция труб отопления, часто встречается в холодильных системах и системах вентиляции. Трубы для отопления, проложенные внутри зданий и изолированные каучуком, не требуют установки пароизоляционного слоя.
Внешне похож на вспененный полиэтилен, выпускается также в виде листов и гибких толстостенных труб. Монтаж тоже практически не отличается, за исключением того, что такая тепловая изоляция труб может крепиться на клей.
Жидкие утеплители
Успешно применяется технология, которая позволяет самостоятельно напылять пену из полиуретанового состава на уже готовые конструкции.
Отличные адгезионные свойства позволяют использовать его не только для изоляции трубопроводов, но и наносить на прочие элементы, нуждающиеся в утеплении: фундамент, стены, кровлю.
Покрытие, помимо теплозащиты, обеспечивает гидро, пароизоляцию, обеспечивает антикоррозионную устойчивость.
Заключение
Правильно выполненный монтаж тепловой изоляции — залог того, что труба не потеряет тепло, а потребитель не замерзнет.
Замерзание же трубопровода холодного водоснабжения неизменно приводит к его разрыву. Вплоть до последнего времени на скрытых и открытых теплотрассах обычными изоляционным материалом была стекловата.
Ее недостатки проистекают один из другого. Такое покрытие требует постоянного контроля.
Даже при незначительном повреждении защищающего поверхностного слоя паропроницаемость и гигроскопичность сводят всю экономию на нет.
Влага является причиной низкого термического сопротивления и преждевременного разрушения.
Значительно улучшить ситуацию помогут современные изоляционные материалы с ячеистой структурой, инертные к воздействию пара и воды: пенополиуретан, вспененный каучук, пенополиэтилен.
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Тепловая изоляция трубопроводов
Сегодня тепловая изоляция трубопроводов необходима как для уменьшения потерь тепла соответствующих систем, так и для понижения температуры коммуникаций для их безопасного использования. Кроме всего, без нее сложно обеспечить нормальную эксплуатацию сетей в зимнее время, поскольку вероятность промерзания и выхода из строя труб достаточно велика и к тому же опасна.
Согласно существующим нормам, а также правилам по безопасной эксплуатации труб подачи пара и горячей воды, для элементов трубопроводов, у которых температура стенок более 55 градусов и при этом они находятся в доступных местах, рекомендуется использовать дополнительную теплоизоляцию, таким образом, чтобы понизить их нагрев. Ввиду этого во время расчетов толщины защитного покрытия, прокладываемого в помещении, за основу заимствуются нормы плотности теплового потока. В отдельных случаях берется во внимание и температура внешней части самой изоляции.
Как рассчитать изоляцию?
Выбор потребного утеплителя, осуществляется исходя из математических расчетов, из которых видно, какой лучше взять материал, его толщина, состав и прочие характеристики. Если все сделать правильно, то вполне реально существенно снизить тепловые потери, а также сделать эксплуатацию систем надежной и абсолютно безопасной.
Теплоизоляция труб пенопластом
На что следует обращать внимание во время расчета:
- разность температур окружающей среды, где применяются коммуникации;
- величину температуры поверхности, которую предполагается утеплять;
- возможные нагрузки, приходящиеся на трубы;
- механические воздействия от внешнего влияния, будь то давление, вибрация и т.д;
- значение коэффициента теплопроводности применяемого утеплителя;
- воздействие и соответствующую величину от транспорта и грунта;
- способность изолятора сопротивляться разного рода деформации.
Следует отметить, что СНиП 41-03-2003 считается основным документом, на основе которого выбираются материалы для утепления, их толщина, согласно конкретным эксплуатационным условиям. В том же СНиП сказано, что для сетей, в которых рабочая температура труб менее 12 градусов, при обработке поверхности обязательно дополнительно укладывать пароизоляцию.
Тепловая изоляция труб может быть рассчитана двумя способами, при этом каждый вариант можно называть надежным и удобным для конкретных условий. Речь идет об инженерном (формульном), и онлайн варианте.
В первом случае реальная толщина оптимального утеплительного слоя определяется технико-экономическим расчетом, в котором главным параметром является температурное сопротивление. Соответствующее значение должно быть в пределах 0.
Важно
86ºC м²/Вт в случае с трубами диаметром до 25мм, и не менее 1.22ºC м²/Вт – от 25мм и выше.
СНиП предусматривает специальные формулы, по которым ведется расчет полного температурного сопротивления утеплительного состава цилиндрических труб.
Обращаем внимание, что при любых сомнениях в правильности расчета, лучше обратиться за помощью и консультацией к специалистам, которые осуществят работу надежно и качественно, тем более что цены на их услуги вполне приемлемы. В противном случае может возникнуть ситуация, когда объем определенных действий может оказаться более затратным по деньгам, нежели делать все с нуля.
При самостоятельном выполнении работ следует понимать и то, что все расчеты толщины утеплителей труб производятся под определенные условия эксплуатации, где учитываются и сами материалы, и температурные перепады, и влажность.
Второй способ реализуется посредством онлайн калькуляторов, которых сегодня бесчисленное множество. Такой помощник, как правило, бесплатный, простой и удобный.
Зачастую в нем также учитываются все нормы и требования СНиП, по которым выполняют расчет профессионалы. Все вычисления осуществляются достаточно быстро и точно.
Разобраться, как пользоваться калькулятором, получится без особого труда.
Изначально выбирается требуемая задача:
- Предотвращение промерзания жидкости трубопровода инженерных сетей.
- Обеспечение постоянной рабочей температуры защитной изоляции.
- Утепление коммуникаций водяных тепловых сетей двухтрубных подземных канальных прокладок.
- Защита трубопровода от образования конденсата на изоляторе.
Затем необходимо ввести основные параметры, посредством которых и осуществляется расчет:
- Наружный диаметр трубы.
- Предпочтительный утепляющий компонент.
- Время, на протяжении которого происходит кристаллизация воды в инертном состоянии.
- Температурный показатель поверхности, подлежащей утеплению.
- Значение температуры теплоносителя.
- Тип используемого покрытия (металл или неметалл).
После ввода всех данных появляется результат расчетов, который может браться за основу в последующем строительстве и поборе материалов.
Теплоизоляция труб центрального отопления
Правильный выбор утеплителя
Главной причиной промерзания труб является малая скорость циркуляции в них рабочих жидкостей. Отрицательным фактором считается процесс замерзания, способный привести к необратимым и катастрофическим последствиям. Именно поэтому теплоизоляция сетей крайне необходима.
В особенной мере нужно уделять внимание приведенному аспекту в трубопроводах, которые функционируют периодически, будь то подача воды со скважины или дачное водяное отопление. Дабы не пришлось в последующем производить восстановление рабочих систем, лучше, все-таки, выполнить их своевременную теплоизоляцию.
Еще недавно работы по утеплению производились по единственной технологии, при этом в качестве защитного элемента применялось стекловолокно. В настоящее же время предлагается огромный выбор всевозможных теплоизоляторов, предназначенных для определенного вида труб, имеющие различные технические характеристики и состав.
Ввиду их направленности применения производить сравнение материалов и говорить о том, что один лучше другого будет неправильным. По этой причине ниже раскроем существующие сегодня изоляторы.
По варианту представления компонента:
- листовой;
- рулонный;
- заливочный
- кожуховый;
- комбинированный.
По области использования:
- для отвода воды и канализации;
- для сетей подачи пара, отопления, горячей и холодной воды;
- для трубопроводов вентиляции и морозильных агрегатов.
Любая теплоизоляция характеризуется устойчивостью к воздействию огня и своей теплопроводностью.
Далее рассмотрим популярные материалы:
- Скорлупа. Преимуществом его является легкость монтажа, оптимальные характеристики и высокое качество исполнения. Отличается низкой теплопроводностью, пожаростойкостью, минимальным уровнем влагопоглощения. Подходит для защиты отопительных сетей и систем водоснабжения.
Утеплитель для труб скорлупа
- Минеральная вата. Обычно она поставляется в рулонах, и применяется для обработки труб, теплоноситель которых имеет очень высокую температуру. Этот вариант целесообразен только при небольших площадях обработки, поскольку минвата достаточно дорогой материал. Укладка его выполняется путем обмотки коммуникаций с фиксацией в заданном положении проволокой из нержавеющей стали или бечевкой. Дополнительно рекомендуется выполнять гидроизоляцию, поскольку вата легко впитывает влагу.
Утеплитель минераловатный цилиндр
- Пенополистирол. Конструкция тепловой изоляции подобного типа больше напоминает две половинки, либо же скорлупу, посредством чего осуществляется изоляция трубопровода. Вариант смело можно назвать качественным и удобным в плане монтажа. За счет минимального влагопоглощения и низкой теплопроводности, высокой пожароустойчивости, минимальной толщины, пенополистерол отлично подходит для защиты сетей топления и подачи воды.
Пенополистерол для труб
- Пеноизол. Теплоизоляция обладает схожими параметрами с пенополистеролом, правда с существенным отличием в монтаже. Нанесение выполняется посредством соответствующего распылителя, поскольку материал имеет жидкое состояние. После полного высыхания вся обработанная поверхность трубы обретает плотную и прочную герметичную структуру, которая надежно сохраняет температуру теплоносителя. Существенным преимуществом является отсутствие необходимости применять дополнительные крепежные элементы для фиксации материала. Минусом считается, разве что, его дороговизна.
Утепления труб пеноизолом
- Пенофол с фольгированной основой. Инновационный продукт, с каждым днем становится все популярней. Он состоит из вспененного полиэтилена и алюминиевой фольги. Двухслойная конструкция позволяет, как сохранять температуру сетей, так и обогревать пространство, поскольку фольга способна отражать и накапливать тепло. Особенно обращаем внимание на низкую способность к горению, высокие экологические данные, способность выдерживать повышенную влажность и существенные перепады температур.
Труба, утепленная фольгированным пенофолом
- Полиэтилен вспененного исполнения. Теплоизоляция этого вида очень распространена, при этом она часто встречается на водопроводных магистралях. Особенностью является простота укладки, для чего достаточно отрезать нужный размер материала и обмотать им технологичную линию, с фиксацией скотчем. Часто вспененный полиэтилен поставляется в виде обертки для трубы определенного диаметра с технологическим разрезом, которые надеваются на нужный участок системы.
Вспененный полиэтилен
Важно знать, что при теплоизоляции трубопроводов все утеплители, кроме пеноизола, требуют дополнительно использования гидроизоляции и скотча для фиксации.
Из всего вышесказанного видно, что вариантов обработки труб достаточно много, и выбор очень велик. Специалисты советуют обращать внимание на условия, в которых будет использоваться каждый материал, его характеристики и способ монтажа. Естественно, не последнюю роль играет и грамотный теплоизоляционный расчет, что позволит быть вам уверенным в выполненной работе.
Видео №1. Теплоизоляция труб. Пример монтажа
Способы теплоизоляции трубопроводов
Спецификации СНиП и многие профессионалы рекомендуют руководствоваться следующими вариантами защиты магистральных линий:
- Воздушное утепление. Обычно коммуникационные системы, проходящие в земле, защищают посредством теплоизоляции определенной толщины. Однако, зачастую не учитывается фактор, что промерзание земли идет от верхней точки к нижней, в то время как поток тепла от труб стремится к верху. Поскольку трубопровод со всех сторон защищен компонентом минимальной толщины, то и восходящее тепло оказывается также изолированным. Рациональнее в данном случае устанавливать утеплитель над верхней частью магистрали, так, чтобы образовывалась тепловая прослойка.
- Использование утеплителя и обогревающего элемента. Отлично подходит в качестве альтернативы традиционным вариантам. В данном случае учитывается момент, что защита линий сезонная, и прокладывать их в земле не рационально из финансовых соображений, как и использовать большую толщину изолятора. По правилам СНиП и инструкциям производителей кабель может находиться как внутри труб, так и снаружи их.
- Прокладка трубы в трубе. Здесь в полипропиленовых трубах дополнительно устанавливаются отдельные трубы. Особенностью способа является то, что отогреть системы реально практически всегда, в том числе и с применением принципа всасывания теплых воздушных масс. Кроме этого, при необходимости, в имеющемся зазоре легко может быть проложен аварийный шланг.
Заключение
Подытожив все вышесказанное можно сказать, что существует масса важных моментов и нюансов по обработке и защите трубопровода.
В любой ситуации всегда лучше начать с просчета потребного утеплителя, выбора его типа, толщины и стоимости.
Не последнюю роль играет и вариант его монтажа, поскольку самые проблемные условия потребуют дополнительных существенных денежных вливаний в строительство необходимых систем.
Совет
Совершенный подход к выбору теплоизоляции, в конечном итоге, может привести к минимальным затратам и снижению сложности выполняемых работ. Качественный подбор потребных утепляющих компонентов позволит эффективно сохранить температуру теплоносителя в трубах, а также значительно увеличить их срок эксплуатации.
Источник: http://izolexpert.ru/teploizolyaciya/teplovaya-izolyaciya-truboprovodov.html
Жидкая теплоизоляция труб и трубопроводов
Основной задачей для поставщиков и потребителей тепла является теплосбережение. Одним из главных пунктов программы теплосбережения является замена ветхих тепловых сетей и прокладка новых теплотрасс трубопроводов с улучшенной теплоизоляцией труб. Для утепления труб применяются различные теплоизоляционные материалы.
Требования к теплоизоляции труб существенно различаются в зависимости от назначения и условий эксплуатации, при этом задача любой теплоизоляционной системы — устойчивая и долговременная защита изолируемых поверхностей.
Утепление труб и трубопроводов
Для теплоизоляции трубопроводов применяют различные виды утеплителей. Материалы для теплоизоляции труб производятся в виде трубных и листовых теплоизоляционных покрытий.
Теплоизоляция для стальных труб выпускается в виде гибких трубок различного диаметра в отрезках или бухтах, листовых рулонов различной длины и ширины, плоских листах различных размеров. Трубная теплоизоляция также производится в виде теплоизоляционных цилиндров (скорлупы).
Вид теплоизоляции труб выбирается с учётом рабочих характеристик и размеров трубопровода. Теплоизоляция для труб производится из различных материалов и выпускается нескольких основных типов:
— теплоизоляция труб из вспенённого полиэтилена;
— теплоизоляция труб из вспенённого синтетического каучука;
— теплоизоляция труб из пенополиуретана (скорлупа ППУ);
— теплоизоляция труб из базальтового волокна.
При строительно-монтажных работах по прокладке трубопроводов отопления и сетей горячего водоснабжения обычно применяются стальные оцинкованные трубы, предварительно изолированные пенополиуретаном в полиэтиленовой оболочке или формованные скорлупы из пенополиуретана. Данные технологии используются при наружной прокладке тепловых сетей, для капитального ремонта теплоизоляции трубопроводов, а также для изоляции трубопроводов в подвалах и чердачных помещениях.
Возможность применения и эффективность теплоизоляционного материала определяется его физико-техническими характеристиками и рабочими параметрами: плотность, теплопроводность, сжимаемость, водопоглощение, водостойкость, паропроницаемость, негорючесть, надёжность, долговечность, возможность проведения монтажных работ вне зависимости от сезона.
Всё более широкую известность на рынке современных теплоизоляционных покрытий приобретает жидкая керамическая теплоизоляция.
Жидкая керамическая теплоизоляция
Жидкая теплоизоляция металла Теплокор |
от 367 руб./кв.м. |
Теплоизоляционная краска Теплокор — это жидкий керамический теплоизоляционный материал на водной основе для защиты металлических, стальных и чугунных поверхностей, в том числе с остатками окалины и ржавчины. Теплоизолятор представляет собой композицию на основе акриловых полимеров, полых стеклокерамических микросфер, ингибиторов коррозии, антикоррозионных пигментов и вспомогательных веществ.
Основные достоинства сверхтонкой керамической теплоизоляции:
• жидкая теплоизоляция имеет низкий коэффициент теплопроводности, что сохраняет тепловую энергию;
• жидкая теплоизоляция имеет высокую сопротивляемость диффузии водяного пара и обладает низкой влагопроницаемостью;
• жидкая теплоизоляция сохраняет носитель внутри труб от нагревания;
• жидкая теплоизоляция сохраняет систему от замораживания на срок, достаточный для того, чтобы провести необходимые ремонтные работы;
• жидкая теплоизоляция защищает трубы от конденсата и коррозии;
• жидкая теплоизоляция устойчива к воздействию агрессивных сред;
• жидкая теплоизоляция устойчива к механическим воздействиям;
• жидкая теплоизоляция обладает эластичностью, что обеспечивает технологичность монтажа и простоту нанесения.
Теплоизоляция для труб: преимущества
Теплоизоляция труб значительно уменьшает потери тепловой энергии в инженерных системах трубопроводов.
Теплоизоляция труб защищает трубопроводы от воздействия агрессивных и химических сред, обладает стойкостью к микроорганизмам и плесени. Также теплоизоляция труб защищает трубопровод от внешних атмосферных и механических воздействий.
Обратите внимание
Теплоизоляция труб обеспечивает защиту трубопроводов от образования конденсата и возникновения коррозии труб и оборудования под изоляцией.
Теплоизолятор Теплокор, используемый для теплоизоляции стальных труб, является не горючим и пожаробезопасным, а также не токсичным и экологически безопасным материалом.
Теплоизоляция для труб: применение
Жидкая теплоизоляция труб применяется при прокладке газопроводов и нефтепроводов, при монтаже трубопроводов в инженерных системах горячего и холодного водоснабжения, системах отопления и канализации, в системах вентиляции и кондиционирования воздуха. Также теплоизоляция для труб широко применяется в холодильных и морозильных системах, в химической и пищевой промышленности.
Теплоизоляция для труб может использоваться при подземном и надземном монтаже трубопровода, утепление труб применяется как внутри помещений, так и на открытом воздухе.
Теплоизоляция для труб может применяться для изоляции не только прямолинейных частей трубопровода, но и для трубопроводов различной конфигурации и сложности.
Утеплители для труб также применяются для изоляции фитингов и запорной арматуры трубопровода.
Утеплитель труб Теплокор применяется для комплексной изоляции металлических труб самого разного назначения (тепловая изоляция и антикоррозийная защита):
— теплоизоляция труб отопления внутри и снаружи зданий;
— утепление водопроводных и канализационных труб;
— теплоизоляция труб горячего и холодного водоснабжения;
— теплоизоляция воздуховодов и труб вентиляции;
— утепление труб дымохода, печных и вытяжных труб;
— теплоизоляция металлических труб на улице и в земле.
Тепловая изоляция оборудования и трубопроводов — на сайте krasko.ru.
Подробнее о жидких теплоизоляционных материалах (тепловая изоляция теплотрасс трубопроводов, жидкая керамическая теплоизоляция, утепление стальных труб и трубопроводов) можно ознакомиться на нашем сайте.
Перейти к списку статей
Версия для печати
Источник: https://www.krasko.ru/articles/art_505/
Изоляция трубопроводов: виды тепловой гидроизоляции
Если вы обустраиваете систему водоснабжения загородного дома своими руками, то обязательно должна использоваться изоляция для труб. Причём это касается не только трубопроводов проходящих на улице, но и систем водоснабжения внутри дома.
Для коммуникаций водоснабжения используется несколько видов изоляции, отличающейся назначением и используемыми для её изготовления материалами. Каждый из видов изоляции выполняет свои функции.
В нашей статье мы подробно рассмотрим, какая изоляция требуется для трубопроводов горячего и холодного водоснабжения, как выполняется эта изоляция, и какие материалы для этих целей можно использовать.
Назначение изоляции
Если вы обустраиваете систему водоснабжения загородного дома своими руками, то обязательно должна использоваться изоляция для труб
Начнём с того, что многие методы изолирования применимы к разным системам: водоснабжения, канализации, отопления и вентиляции. Но в нашей статье мы рассмотрим только те методы, которые применимы к водопроводным трубам горячего и холодного водоснабжения.
Изоляция трубопроводов делится на два вида:
- теплоизоляционные мероприятия;
- гидроизоляция.
Назначение каждого вида изоляционных мероприятий следующее:
- Теплоизоляция наружного трубопровода холодного водоснабжения нужна для защиты системы от замерзания в холодное время года. Если вода в трубе замёрзнет в морозы, то она не сможет попасть в дом, а найти ледяную пробку и ликвидировать её будет довольно сложно.
- Теплоизоляция наружных труб горячего водоснабжения нужна для того, чтобы горячая вода во время транспортировки к потребителю не остывала. Кроме этого, такая защита способствует повышению срока службы системы.
- Также выполняется тепловая изоляция трубопроводов горячей воды, которые будут располагаться в штробах – каналах, прорезанных в стене. В этом случае данные методы защиты труб нужны по той причине, что температура воды в трубах, соприкасающихся с холодными кирпичными или бетонными стенами, может понижаться.
- Гидроизоляция наружных труб горячего и холодного водоснабжения нужна для защиты их от коррозии. Всё дело в том, что влага, присутствующая в грунте, может вызывать ржавление стальных труб. Однако это не касается изделий из пластика.
- Различные виды гидроизоляции используются для защиты стыков трубопровода от протекания.
- Что касается систем холодного водоснабжения внутри дома, то их гидроизоляция выполняется с целью защиты от конденсата, который, собираясь на трубах, может вызывать их коррозию. Опять же это не касается пластиковых трубопроводов, не подверженных коррозии.
Существуют разные виды и методы гидро- и теплоизоляции трубопроводов и их стыков. Рассмотрим их подробнее.
Теплоизоляция труб
Довольно эффективным методом теплоизоляции наружных труб является прокладка греющего кабеля
Обычно используются следующие методы тепловой изоляции труб водоснабжения:
- Самым эффективным и надёжным способом защиты трубопроводов водоснабжения от замерзания зимой является создание высокого давления в системе. Благодаря этому жидкость движется по трубам с большой скоростью и не успевает замёрзнуть. Но такие методы не подходят для домашнего водоснабжения, ведь при закрытом кране жидкость не будет двигаться в трубах.
- Довольно эффективным методом теплоизоляции наружных труб является прокладка греющего кабеля в одной траншее с коммуникациями. Такие методы используются в том случае, если дно траншеи не получится заглубить ниже точки промерзания почвы. В этом случае копают канаву глубиной не более 40 см, а вокруг трубопровода наматывают специальный греющий кабель. Недостаток метода состоит в энергозависимости и расходах на оплату электроэнергии.
Важно: для этих целей стоит приобрести кабель с мощностью 10-20 Вт/м. Он может применяться как снаружи, так и внутри коммуникаций.
- Самый простой и дешёвый способ теплоизоляции – использование специальных материалов, которые будут защищать трубопровод от холода.
Совет: очень важно создать из этих материалов в верхней части трубопровода нечто, наподобие арки, защищающей от холода, поступающего с поверхности. Нижняя часть элемента может обогреваться за счёт тепла, поступающего из земли.
Классификация
Обычно используются следующие средства изоляции:
- заливочные;
- рулонные;
- штучные;
- комбинированные;
- кожуховые.
Материалы для теплоизоляции труб горячего водоснабжения
ППМИ — это монолитная трёхслойная конструкция
Изоляция может быть внутренней и внешней. Для выполнения изоляции могут использоваться следующие готовые изделия:
- ППУ. Этот материал увеличивает срок службы трубопровода, повышается гидроизоляция системы. Материал выдерживает скачки температуры и её предельные показатели. Теплопотери составляют не более 5 %.
- ППМИ используется только для коммуникаций горячего водоснабжения. Это монолитная трёхслойная конструкция. Плотность материала в сечении отличается на разных слоях. В составе изделия есть антикоррозионный слой, тепловая защита и защита от влаги. Изделие повышает срок службы сети, не даёт собираться конденсату. Материал устойчив к температурным перепадам и механическим повреждениям.
- ВУС – это двухслойное покрытие с антикоррозионными характеристиками.
Материалы для теплоизоляции труб с холодной водой
Изоляция для труб может выполняться с использованием следующих материалов:
- Базальтовый утеплитель. Изделие имеет цилиндрическую форму (бывает разных размеров) и выполняется из базальтового волокна. Главное достоинство этого материала состоит в том, что для укладки коммуникаций не нужны специальные лотки. Монтаж выполняется просто, для этого не требуются специальные навыки. Это самая эффективная теплоизоляция для трубопроводов холодного водоснабжения.
- Вспененный каучук – не впитывает и не боится влаги, отличается устойчивостью к высоким температурным показателям, отличается самозатухаемостью. Изготавливается в виде трубок или пластин. Может иметь фольгированное покрытие.
- Вспененный полиэтилен изготавливается в виде трубок с продольным разрезом. Это безопасный экологически чистый материал, отличающийся устойчивостью к температурным и химическим воздействиям, образованию плесени и влаге.
- Минераловатные маты могут быть фольгированными, прошивными или ламельными. Этот материал отличается внушительными размерами и подходит для утепления габаритных изделий на длительный срок.
- Также в качестве утеплителя используется стекловолоконный материал. Однако он может применяться только в сочетании с дополнительными изоляторами, например, стеклотканью или рубероидом. Вместо специально предназначенного утеплителя из стекловаты можно использовать обычные стекловолоконные маты, которыми трубопроводы просто укутываются, фиксируются проволокой и обматываются полиэтиленом. Этот способ не самый удобный, но зато надёжный и проверенный.
- Также изоляция для труб может делаться из пенополистирола или пенопласта. Этот материал самый востребованный и популярный, поскольку с его помощью изоляция трубы может быть выполнена своими руками. Утеплитель выполнен в виде разъёмного цилиндра (скорлупы). Такие виды изоляции могут быть с покрытием или без него. При использовании этого материала укладка лотков необязательна. Поверх изделия можно использовать средства для гидроизоляции.
- Самый дорогой, но и самый эффективный способ – это напыление пенополиуретана на трубы. Этот материал при помощи специального оборудования распыляется по поверхности элемента и после застывания образует плотное покрытие, надёжно защищающее от холода. Такой метод утепления не получится выполнить самостоятельно. Обычно он используется в промышленности.
- Жидкая теплоизоляция – это специальная термокраска, которая даже при тонкослойном нанесении обеспечивает эффективную защиту от холода. Изоляционная термокраска благодаря простоте использования и универсальности набирает популярность.
Вспененный каучук – не впитывает и не боится влаги, отличается устойчивостью к высоким температурным показателям
Гидроизоляционные мероприятия
Этот материал применяется для защиты от коррозии поверхности трубопроводов из стали
Гидроизоляция труб и стыков выполняется с использованием следующих материалов:
- Поливинилхлоридная лента. Этот материал применяется для защиты от коррозии поверхности трубопроводов из стали. Также он подходит для изоляции стыков, резьбовых соединений и в случае выполнения ремонтных работ на водопроводных сетях.
- Резиновое полотно раньше использовалось для изоляции только подземных инженерных сетей, однако теперь оно применяется и для защиты элементов, проходящих в подвальных помещениях домов. Этот прочный, устойчивый к воздействию масел и щелочей материал отличается внушительным сроком службы. Изделие не меняет свои эксплуатационные характеристики при высоких температурах и отличается простотой монтажа благодаря хорошей эластичности.
- Гидроизоляция трубопроводов с помощью оклеечных материалов (изола) отличается высокой прочностью и температурной устойчивостью. Этот эластичный материал хорошо растягивается при монтаже. Его единственный недостаток – низкая стойкость к воздействию органических составов и растворителей. Материал подходит для защиты от коррозии наружных трубопроводов водоснабжения.
- Термоусаживаемая лента используется для изоляции стыков стальных и пластиковых изделий. Лента состоит из термоплавкого слоя и полиэтиленовой плёнки. Этот материал не подходит для трубопроводов, которые будут эксплуатироваться в условиях высоких температур. Специальные термоусаживаемые муфты применяются для защиты стыков.
- Самоклеящаяся лента из полимерного материала. Второе её название фторопластовый уплотнитель. Этот материал используется для защиты от протеканий в местах резьбовых соединений. Изделие выдерживает воздействие высоких температур без изменения своих эксплуатационных характеристик.
Помогите нам стать лучше, оцените подачу материала и труд автора
Загрузка… Рассказать друзьям и коллегам в социальных сетях
Источник: https://vodakanazer.ru/truboprovod/izolyaciya-trub.html
Правила изоляции трубопроводов отопления
Главная » Отопление » Правила изоляции трубопроводов отопления
При производстве работ по оборудованию и монтажу трубопроводов необходимо соблюдать нормы СНиП. Что же такое СНиП? Это строительные нормы и правила по организации строительного производства, по соответствию стандартам, техническим условиям и нормативным ведомственным актам.
Основные нормы и правила при теплоизоляции
Тепловые сети – это один из основных элементов централизованного теплоснабжения. Следует строго придерживаться норм и правил при составлении проекта теплоизоляции трубопроводов.
При соблюдении СНиП, теплоизоляция трубопроводов будет проведена качественно без нарушений стандартов. Тепловая изоляция трубопроводов СНиП предусмотрена для линейных участков трубопроводов, тепловых сетей, компенсаторов и опор труб.
Важно
Утепление трубопроводов в жилых домах, производственных зданиях требует четкого соответствия нормам проектирования и системе пожарной безопасности.
Качество материалов должно соответствовать СНиП, теплоизоляция трубопроводов должна быть направлена на уменьшение потерь тепла.
Основные задачи теплоизоляции, особенности выбора материалов
Основной целью теплоизоляции является уменьшение потерь тепла в системах отопления или трубопроводов с горячим водоснабжением. Основная функция утеплителя направлена на предотвращение конденсата.
Конденсат может образоваться как на поверхности трубы, так и в изоляционном слое.
Кроме того, согласно нормам техники безопасности, утепление трубопроводов должно обеспечивать определенную температуру на поверхности изоляции, а в случае застоя воды предохранять от замерзания и заледенения в зимний период.
Утепление трубопроводов также увеличивает срок эксплуатации труб.
По нормам СНиП, теплоизоляция трубопроводов применяется как для централизованного отопления, так и уменьшает теплопотери внутридомовых тепловых сетей. Что необходимо учесть при выборе теплоизоляции:
- Диаметр трубы. От него зависит, какой тип изолятора будет применяться. Трубы могут быть цилиндрической формы, полуцилиндры или маты мягкие в рулонах. Утепление труб маленького диаметра в основном выполняется с помощью цилиндров и полуцилиндров.
- Температуру теплоносителя.
- Условия, в которых будут эксплуатироваться трубы.
Виды утеплителей
Рассмотрим самые популярные и часто используемые материалы для теплоизоляции:
- Стекловолокно. Материалы из стеклянного волокна часто используют для трубопроводов надземной прокладки, так как они имеют длительный срок эксплуатации. Стекловолокно имеет низкую температуру применения и характеризуется низкой плотностью. В качественном стекловолокне высокая вибрационная, химическая и биологическая стойкость.
- Минеральная вата. Утепление трубопроводов минеральной ватой является весьма эффективным теплоизолятором. Этот изоляционный материал применят в разных условиях. В отличие от стекловолокна, которое имеет низкую температуру применения (до 180ºС), минеральная вата выдерживает температуру до 650 ºС. При этом сохраняются ее теплоизолирующие и механические свойства. Минеральная вата не теряет форму, имеет высокую стойкость к химическому воздействию, кислоте. Этот материал не токсичен и отличается низкой степенью влагопоглощения.
В свою очередь, минеральная вата бывает двух форм: каменная и стеклянная.
Утепление трубопроводов с помощью минеральной ваты применяется в основном в жилых домах, общественных и бытовых помещениях, а также для защиты поверхностей, которые подвергаются нагреву.
- Пенополиуритан имеет широкую область применения, но является достаточно дорогим материалом. Согласно нормам СНиП, тепловая изоляция трубопроводов является экологически безопасной и не воздействует на здоровье человека. Пенополиуритан устойчив к воздействию внешних факторов, нетоксичен и довольно прочен.
- Пенополистирол. В некоторых областях промышленности пенопласт является незаменимым материалом, так как имеет низкие показатели теплопроводности и влагопоглощения и долгий срок службы. Пенополистирол трудно воспламеняем, и является отличным звукоизолятором.
- Кроме вышеперечисленных материалов, утепление трубопроводов можно осуществлять и с помощью других менее известных, но не менее практичных утеплителей, таких как пеностекло и пеноизол. Эти материалы прочные, безопасные и являются близкими родственниками пенопласта.
Защиту от коррозии и высокую теплоизоляцию труб может обеспечить и теплоизоляционная краска.
Это относительно новый материал, основным плюсом которого является то, что она проникает в труднодоступные места и способна выдерживать высокие температурные перепады.
dom-data.ru
Особенности теплоизоляции трубопроводов для тепловых сетей: нормативы, материалы, технология
При прокладке трубопроводов обязательным условием является выполнение работ по теплоизоляции сетей. Касается это всех трубопроводов — не только водоснабжения, но и систем канализации. Необходимость в этом связана с тем, что в зимнее время вода, проходящая по трубам, может замерзать.
А если по коммуникациям циркулирует теплоноситель, то это приводит к снижению его температуры. Чтобы свести к минимуму потери тепла, при прокладке трубопроводов и прибегают к устройству теплоизоляционного слоя.
Какие материалы и методы можно использовать для тепловой изоляции сетей — об этом пойдет речь в этой статье.
Тепловая изоляция трубопроводов: пути решения проблемы
Обеспечить эффективную защиту для систем трубопроводов от факторов внешней среды главным образом от температуры наружного воздуха можно, если принять следующие меры:
- создание системы обогрева с использованием нагревательных кабелей. Этот способ предполагает выполнение работы по закреплению нагревательных элементов поверх бытовых трубопроводов либо заведение приспособления внутрь коллектора. Работают элементы нагрева от электрической сети. Обращаем внимание что, когда выполняется постоянный обогрев трубопроводов, то используются саморегулирующие провода, включение и отключение которых происходит в автоматическом режиме. Применение таких систем обогрева исключает ситуации перегрева конструкций;
- прокладка сетей трубопроводов ниже уровня промерзания грунта. Такой вариант их размещения позволяет исключить контакт сетей с источниками холода;
- использование подземных лодок закрытого типа. Воздушное пространство изолированное, поэтому воздух вокруг трубопроводов медленно остывает. А это позволяет исключить замерзание теплоносителя или другого содержимого труб;
- создание контура из теплоизоляционных материалов для обеспечения высокой термозащиты трубопроводов. Наиболее распространенным является именно такой вид защиты трубопроводов.
Так как последний способ чаще всего используется, то имеет смысл поговорить о нем более подробно.
Нормативы к тепловой изоляции трубопроводов
Требования к тепловой изоляции трубопроводов оборудования сформулированы в СНиП.
В нормативных документах содержится подробная информация о материалах, которые могут использоваться для теплоизоляции трубопроводов, а кроме этого методах проведения работ.
Кроме этого, в нормативных документах обозначены стандарты к контурам теплоизоляции, которые часто применяются для изоляции трубопроводов.
В СНиП содержатся следующие рекомендации по теплоизоляции трубопроводов:
- вне зависимости от того, какую температуру имеет теплоноситель, любая система трубопроводов должна утепляться;
- применять для создания теплоизоляционного слоя можно как готовые, так и сборные конструкции;
- защита от коррозии должна быть предусмотрена для металлических частей трубопроводов.
Желательным является использование при изоляции трубопроводов многослойной конструкции контура. В ее состав обязательно должны входить следующие слои:
- утеплитель;
- пароизоляция;
- защита из плотного полимера, нетканого полотна или металла.
В некоторых случаях может быть построено армирование, которое исключает смятие материалов, а помимо этого предотвращает деформацию труб.
Отметим, что большая часть требований, содержащихся в нормативных документах, касается изоляции магистральных трубопроводов большой мощности. Но даже в случае монтажа бытовых систем, нелишним будет ознакомиться с ними и учитывать их при монтаже систем водоснабжения канализации своими силами.
Материалы для тепловой изоляции трубопроводов
В настоящий момент на рынке предлагается большой выбор материалов, которые могут использоваться для изоляции трубопроводов. Каждый из них имеет свои преимущества и недостатки, а кроме этого и особенности применения. Для правильного выбора теплоизолятора необходимо все это знать.
Полимерные утеплители
Когда стоит задача создать эффективную систему теплоизоляции трубопроводов, чаще всего внимание обращают на полимеры на вспененной основе. Большой ассортимент позволяет подобрать подходящий материал, благодаря которому можно обеспечить эффективную защиту от внешней среды и исключить потери тепла.
Если говорить более подробно о полимерных материалах, то из доступных на рынке можно выделить следующие.
Пенополиэтилен.
Главной характеристикой материала является невысокая плотность. Кроме того, он пористый и обладает высокой механической прочностью. Этот утеплитель применяют для изготовления цилиндров с разрезом.
Их монтаж могут выполнить даже люди, далекие от сферы теплоизоляции трубопроводов.
Однако, для этого материала характерен один недостаток: конструкции, выполненные из пенополиэтилена, обладают быстрым износом и вдобавок к этому имеют слабую термостойкость.
Если для тепловой изоляции трубопроводов выбраны цилиндры из пенополиэтилена, то особое внимание необходимо обращать на их диаметр. Он должен соответствовать диаметру коллектора. Учитывая это правило при выборе конструкции утепления, можно исключить самопроизвольное снятие кожухов из пенополиэтилена.
Пенополистирол.
Главной особенностью этого материала является эластичность. Также для него характерны высокие показатели прочности. Защитные изделия для теплоизоляции трубопроводов из этого материала выпускают в виде сегментов, которые своим видом напоминает скорлупу.
Совет
Специальные замки используются для соединения деталей. Они имеют шипы и пазы, благодаря которым обеспечивается быстрота монтажа этих изделий. Использование скорлупы из пенополистирола с техническими замками исключает возникновение после монтажа «мостиков холода».
Кроме этого, при установке нет необходимости в использовании дополнительного крепежа.
Пенополиуретан.
Этот материал применяют главным образом для предустановленной тепловой изоляции трубопроводов тепловых сетей. Однако использовать его можно и для утепления бытовых систем трубопроводов.
Этот материал выпускается в виде пены или скорлупы, которая состоит из двух или четырех сегментов. Утепление методом напыления обеспечивает надежную теплоизоляцию с высокой степенью герметичности.
Применение такого утепления наиболее подходит для систем коммуникаций, отличающихся сложной конфигурацией.
Используя для теплоизоляции трубопроводов тепловых сетей ППУ в виде пены, необходимо знать о том, что она разрушается под воздействием ультрафиолетовых лучей. Поэтому, чтобы изоляционный слой прослужил долго, необходимо обеспечить его защиту. Для этого поверх пены наносят слой краски или укладывают нетканое полотно с хорошей проницаемостью.
Волокнистые материалы
Утеплители этого типа представлены в основном минеральной ватой и ее разновидностями. В настоящий момент среди потребителей они наиболее популярны в качестве утеплителя. Материалы этого типа также хорошо востребованы, как и полимерные материалы.
Для тепловой изоляции, выполняемого с применением волокнистых утеплителей, характерны определенные преимущества. К таковым можно отнести следующие:
- незначительный коэффициент теплопроводности;
- стойкость теплоизоляционного материала к воздействию таких агрессивных веществ, как кислоты, щелочи, масло;
- материал в состоянии без дополнительного каркаса поддерживать заданную форму;
- стоимость утеплителя довольно приемлемая и доступна для большинства потребителей.
Обращаем внимание, что во время работ по тепловой изоляции трубопроводов такими материалами необходимо исключить сжимание волокна при укладке утеплителя. Также важно обеспечить защиту материала от воздействия влаги.
Изготавливаемые из полимерных и минераловатных утеплителей изделия для тепловой изоляции в некоторых случаях могут покрываться фольгой из алюминия или стали. Использование таких экранов обеспечивает снижение рассеивания тепла.
Многослойные конструкции для защиты трубопроводов
Нередко для утепления трубопроводов устраивается теплоизоляция по методу «труба в трубе». При использовании этой схемы выполняется монтаж теплозащитного кожуха. Главная задача специалистов, осуществляющих монтаж такого контура, заключается в том, чтобы правильно соединить все детали в единую конструкцию.
По завершении работы получается конструкция, которая выглядит следующим образом:
- в качестве основы теплозащитного контура выступает труба из металла или полимерного материала. Она является несущим элементом всего устройства;
- из вспененного ППУ выполнены теплоизоляционные слои конструкции. Нанесение материала производится по заливной технологии, расплавленной массой заполняется специально созданная опалубка;
- защитный кожух. Трубы из оцинкованной стали или полиэтилена используются для его изготовления. Первые служат для прокладки сетей на открытом пространстве. Вторые применяются в тех случаях, когда системы трубопроводов прокладываются в грунте по безканальной технологии. Кроме этого, часто при создании такого типа защитного кожуха в утеплитель на основе пенополиуретана закладываются медные проводники, основным предназначением которых является дистанционный контроль состояния трубопровода, в том числе и целостности слоя теплоизоляции;
- если на место монтажа трубы поступают в собранном виде, то для их соединения используют метод сварки. Специальные термоусадочные манжеты специалисты применяют для сборки теплозащитного контура. Или же могут использоваться накладные муфты, изготовленные на основе минеральной ваты, которые покрыты слоем фольги.
Устройство тепловой изоляции трубопроводов своими руками
Есть ряд факторов, от которых может зависеть технология создания теплоизоляционного слоя на трубопроводах. Одним из самых важных является то, как прокладывается коллектор — снаружи или его монтаж выполняется в земле.
Утепление подземных сетей
Для решения задачи по обеспечению теплозащиты заглубленных коммуникаций работы по утеплению проводятся в следующем порядке:
- сначала канализационные лотки укладываются на дно траншеи;
- после этого поверх них выполняется прокладка труб, после чего приступают к герметизации соединений между ними;
- далее на трубы надеваются кожухи, а потом конструкция оборачивается при помощи паронепроницаемой стеклоткани. Для фиксации материалов используются хомуты из полимерных материалов;
- далее лоток закрывается крышкой, после этого засыпается грунтом. В зазор между ним и траншеей выполняется укладка песчано-глиняной смеси с последующей тщательной утрамбовкой;
- если лотки отсутствуют, то трубы укладываются на уплотненный грунт с подсыпкой песчано-гравийной смесью.
Тепловая изоляция наружного трубопровода
В соответствии с существующими нормативами, трубопроводы, расположенные на поверхности земли, теплоизолируют следующим образом:
- работы по утеплению начинаются с того, что все детали очищают от ржавчины;
- далее выполняют обработку труб антикоррозионным составом. После этого переходят к установке полимерной скорлупы с последующим обертыванием труб рулонным утеплителем из минеральной ваты;
- обращаем внимание, что для покрытия конструкции можно использовать слой полиуретановой пены или же можно покрыть конструкции несколькими слоями теплоизоляционной краски;
- следующим шагом является обертывание трубы как в предыдущем варианте.
Наряду со стеклотканью могут применяться и другие материалы, например, фольгированная пленка с полимерным армированием. Когда эта работа выполнена, осуществляют закрепление конструкций, используя хомуты из стали или пластика.
Тепловая изоляция трубопроводов – важная задача, которая обязательно должна проводиться при прокладке коммуникаций. Для её выполнения существует немало материалов и технологий.
Выбрав подходящий способ тепловой изоляции, необходимо придерживаться технологии работ.
Обратите внимание
В этом случае потери тепла будет минимальными, а кроме этого будет обеспечена защита конструкции трубопроводов от различных факторов, что положительно скажется на сроке их службы.
Источник: https://www.teplo-ltd.ru/otoplenie/pravila-izolyacii-truboprovodov-otopleniya.html
Изоляция труб холодного водоснабжения
Изоляция труб холодного водоснабжения 12.05.2014 19:16
В предыдущей статье мы рассказали Вам о том, зачем нужно проводить изоляцию труб, подающих и переносящих горячую воду.
В данной статье мы решили рассмотреть обратный вариант труб – холодные трубы и их изоляция – тема настоящей статьи.
Зачем нужна изоляция труб холодного водоснабжения?
В первую очередь изоляция труб холодного водоснабжения, например, системы холодного водоснабжения или системы кондиционирования, нужна для того, чтобы можно было ограничить поток теплого воздуха из окружающего пространства.
Главной задачей, которую мы решаем при изоляции труб холодного водоснабжения является то, что изоляция труб холодного водоснабженияпредотвращает нагрев содержимого труб, что предотвратить перемерзание труб, а также предотвратит образование конденсата влаги.
Изоляция труб холодного водоснабжения – важно для здоровья!
Существует еще необходимость изолирования труб холодного водоснабжения, связанная напрямую со здоровьем – если вода в трубах, предназначенная для питья будет нагреваться, то такое положение вещей создаст благоприятную среду для роста и размножения бактерий. Для того, чтобы избежать ненужного нагревания воды в трубах, необходимо производить изоляцию труб требуемой толщины, чтобы вода в трубах не нагревалась.
Изоляция труб холодного водоснабжения – предотвращение появления конденсата
Все знают, что теплый воздух содержит влагу, которая превращается в конденсат при соприкосновении с холодной поверхностью. Холодную поверхность необходимо изолировать так, чтобы температура внешней поверхности изоляционного материала была выше температуры конденсации – так называемой точки росы окружающего воздуха.
Чем вреден конденсат и почему мы так стремительно хотим от него избавиться?
Все очень просто, конденсат – это влага, которая разрушительно воздействует на трубы, что, в конечном итоге, приводит к их порче.
Если на трубах образуется конденсат, то со временем небольшие капельки стекаются в более крупные капли воды и стекают по стенам, капают на пол, на потолке постоянно образуется мокрое пятно, все это – не лучший вариант для постройки, будь то жилой дом или объект промышленного назначения.
Для того, чтобы пары воздуха не перемещались свободно изоляцию, которую Вы будете использовать, необходимо оснастить дополнительной пароизоляцией.
Важно
При установке изоляции инженерных систем важно учитывать не только материал, который Вы выбрали для проведения изоляционных работ, но и профессионалов – монтажников, которых Вы выбрали для проведения работ поизоляции инженерной системы.
Важно отметить еще такую особенность, что если трубы с холодным водоснабжением, которые нуждаются в изоляции, находятся в помещениях, где нет отопления, или в подвале или, скажем, вне помещений – на улице, где температура воздуха может быть или положительной или отрицательной, трубы обязательно нужно изолировать, чтобы предотвратить замерзание в них воды.
Если в трубопроводе низкий расход воды, то есть вода заполняет трубопровод не полностью, в такой ситуации мы рекомендуем обратить внимание на дополнительное применение электроподогрева.
Источник: http://regionizolaciya.ru/novosti-6/izolyaciya-trub-kholodnogo-vodosnabzhen/
Большая Рнциклопедия Нефти Рё Газа
Cтраница 1
Тепловая изоляция газопроводов осуществляется после испытания их на прочность и плотность и устранения всех обнаруженных при этом дефектов. [1]
Тепловая изоляция газопроводов выполняется в следующих случаях: при необходимости предупреждения и уменьшения теплопотерь; во избежание ожогов при температуре стенки выше 60 С; при необходимости обеспечения нормальных температурных условий в помещении. [3]
Тепловая изоляция газопроводов осуществляется после испытания их на прочность и плотность и устранения всех обнаруженных при этом дефектов. [4]
Тепловую изоляцию газопроводов выполняют при необходимости уменьшения тепловых потерь; во избежание ожогов при температуре стенки выше 60 С; при необходимости обеспечения нормальных температурных условий в помещении. Теплоизоляционные материалы должны быть несгораемыми. [5]
При отсутствии тепловой изоляции газопровода ( что характерно и для шахтных воздушных и газовых сетей) имеет место теплообмен между газом и окружающей средой, в результате чего температура газа по всей длине газопровода остается практически постоянной и равной примерно температуре окружающей среды. [6]
В случае необходимости тепловая изоляция газопроводов может быть осуществлена совместно с обогревающим спутником. [7]
В случае необходимости тепловая изоляция газопроводов можег быть осуществлена совместно с обогревающим спутником. [8]
Совет
В случае необходимости тепловая изоляция газопроводов может быть осуществлена совместно с обогревающим спутником. [9]
В случае необходимости тепловая изоляция газопроводов может быть осуществлена совместно с обогревающим спутником. [10]
На газопроводах должны предусматриваться устройства для отвода ( спуска) конденсата и тепловая изоляция газопровода. Тип и толщина изоляции определяются проектной организацией. [11]
Водоотводчики и задвижки желательно устанавливать в утепленных местах, будках, а дренажные трубы обязательно изолировать даже при транспортировке сухих газов и отсутствии изоляции на газопроводах. Тепловая изоляция газопроводов и способы отвода из них влаги определяются проектом. [12]
Тепловая изоляция газопровода должна отвечать условиям, при которых температура газа при передаче от газогенераторной станции до места потребления не снизилась бы до температуры точки росы. Поэтому желательно, чтобы обслуживающий персонал вел постоянное наблюдение за температурой газа на выходе из газогенератора и не допускал значительных ее колебаний. Для этого, в частности, необходима своевременная и регулярная загрузка генератора углем. [13]
РќР° внутризаводских надземных газопроводах, РІ зависимости РѕС‚ РёС… протяженности Рё трассировки, предусматриваются линзовые или Рџ — образные компенсаторы, устройства для СЃР±РѕСЂР° Рё отвода влаги, продувочные газопроводы. РџСЂРё использовании влажного газа может оказаться необходимым устройство тепловой изоляции газопровода. РќР° подземных газопроводах устанавливаются СЃР±РѕСЂРЅРёРєРё конденсата, контрольные трубки для проверки плотности газопроводов Рё контрольные РїСЂРѕРІРѕРґРЅРёРєРё для выполнения электрических замеров РїРѕ проверке наличия блуждающих токов. [14]
В местностях с устойчивой низкой температурой газопровод прокладывается в одной изоляции с паропроводом.
Водоотводчики и задвижки желательно устанавливать в отепленных местах, будках, а дренажные трубы обязательно изолировать даже при транспортировке сухих газов и отсутствии изоляции на газопроводах. Тепловая изоляция газопроводов и способы отвода из них влаги определяются проектом. [15]
Страницы: 1 2
Источник: https://www.ngpedia.ru/id54339p1.html
Теплоизоляция трубопроводов
Основная задача теплоизоляции – надежная, качественная и долговременная защита изолируемых поверхностей. Грамотно выполненная теплоизоляция защитит коммуникации от промерзания и выпадения конденсата – основной причины коррозии, продлит срок службы без ремонта, повысит экономическую эффективность системы автономного водоснабжения.
Теплоизоляция труб предотвращает окисление и появление ржавчины на металлических трубах, являясь, таким образом, и антикоррозионным покрытием. Кроме того, теплоизоляционный слой служит шумоизолятором, заглушая технологические шумы, возникающие при перепадах давления.
Для правильного выбора теплоизоляционного материала необходимо четко представлять себе, для каких конкретных целей будет использоваться данный материал. Теплоизоляция может быть нужна как для защиты трубопроводов от внешних температур (холодное водоснабжение), так и во избежание теплопотерь из самих трубопроводов (теплосети и трубопроводы горячего водоснабжения).
Неправильный подбор теплоизоляционных материалов чреват такими последствиями как: преждевременный выход трубопроводов из строя, необходимость частого ремонта, аварийные ситуации.
Современный рынок теплоизоляционных материалов и технологий предлагает самые различные по свойствам и техническим характеристикам варианты утеплителей труб водоснабжения: стекловату, базальтовую вату, пенополиуретан и др.
Изолятором тепла во всех перечисленных вариантах является воздух. Поэтому различия между видами теплоизоляционных материалов для труб водоснабжения заключается только в таких их характеристиках, как влагопроницаемость, пожаростойкость и т. д.
, а коэффициент теплопроводности у них один.
Пенополиэтиленовая трубная оболочка
Наиболее распространенным в последнее время видом трубной теплоизоляции является пенополиэтилен с различной толщиной стенки и различным внутренним диаметром, так называемые трубные пенополиэтиленовые оболочки.
Пенополиэтилен – экологически безопасный материал, не выделяющий опасных для человека и окружающей среды соединений, он не боится перепадов температур, не гниет и не поддерживает горение. Пенополиэтилен представляет собой полимерный материал с закрытой мелкоячеистой структурой.
Обратите внимание
Это один из самых эффективных современных теплоизоляционных материалов, срок эксплуатации покрытий из этого материала не менее 25 лет. Он влаго- и паронепроницаем, благодаря закрытоячеистой структуре, что позволяет его использовать и как гидроизолятор.
Выпускается вспененный полиэтилен как с покрытием, так и без, в рулонах и матах, в виде трубчатой оболочки и жгутов. Покрытием вспененного полиэтилена может служить фольга, лавсан, металлизированная пленка, утепление в данном случае обеспечивается отражающей способностью материала покрытия.
Легкость и эластичность делают работу с этим материалом менее трудоемкой. Пенополиэтилен может эксплуатироваться в температурном диапазоне от -80 градусов С до +110 градусов С, что делает его практически незаменимым теплоизоляционным материалом как для труб холодного водоснабжения, так и для труб отопления и горячего водоснабжения.
Плотность вспененного полиэтилена, используемого в целях теплоизоляции, колеблется в пределах 20-80 кг/м3. Материалы именно с таким диапазоном плотности обеспечивают превосходную эластичность, гидро- и теплоизоляционные свойства.
В зависимости от технологии производства вспененный полиэтилен бывает «сшитый» и «несшитый». В «несшитом» пенополиэтилене молекулы находятся в химически несвязанном виде в отличие от «сшитого», обладающего связанной молекулярной структурой.
«Сшитый» пенополиэтилен характеризуется более высокой плотностью 25-200 кг/м3, чем «несшитый» и улучшенными теплоизоляционными свойствами: так, 1 см «сшитого» пенополиэтилена по своим теплоизоляционным качествам равен 1,5 см минваты, 4,5 см дерева и 15 см кирпичной кладки.
Рабочий диапазон температур «сшитого» материала больше, чем «несшитого» на 20-30 процентов, что увеличивает возможности его применения.
Так, если температура носителя в трубопроводе не превышает 70 градусов, возможно применять для теплоизоляции «несшитый» пенополиэтилен, но при температуре носителя более 90 градусов он может расплавиться, поэтому в таком случае «сшитый» пенополиэтилен более пригоден для использования.
Все эти преимущества делают вспененный пенополиэтилен лидером среди теплоизоляционных материалов, позволяют применять его в сложных условиях эксплуатации, в грунтах различной агрессивности и в широком температурном диапазоне. Высокое качество такой теплизоляции значительно снижает затраты на техническое обслуживание трубопроводов.
Перед монтажом теплоизоляционной пенополиэтиленовой оболочки трубы должны быть при необходимости очищены от следов грязи, масел, лакокрасочных покрытий и окалины. Поскольку сама оболочка обладает антикоррозионными свойствами, дополнительная антикоррозионная обработка не проводится. Выбор толщины оболочки зависит от температуры подаваемой воды и диаметра труб.
Для труб холодного водоснабжения толщина трубной пенополиэтиленовой изоляции составляет приблизительно 10±2 мм (возможно и 20±2), а для труб горячего водоснабжения не менее 20±2. Для теплоизоляции возможно также применение гофрированных оболочек. Их использование улучшает теплозащитные показатели покрытия на 10-15 %. Как правило, пенополиэтиленовые оболочки применяются для теплоизоляции стальных труб с диаметрами 15-110 мм. Выпускаются в виде полых неразрезанных цилиндров, а также разрезанных и надеваемых на трубу сбоку. Оболочка натягивается на трубу с торца с небольшим усилием, при этом зазор между изолируемой металлической трубой и оболочкой не должен превышать 1-3 мм.
Метод трубной пенополиэтиленовой изоляции более всего подходит для подземных трубопроводов. Для теплоизоляции наземных водоводов предпочтительнее оцинкованные стальные оболочки. Они надежно защищают трубопровод от воздействия атмосферных явлений: солнечной радиации, перепадов давления, дождя и ветра. Толщина оцинкованной стальной оболочки около 1 см.
Монтаж теплоизоляции должен производиться в соответствии с правилами и стандартами, различными для разных материалов. Однако существуют и общие обязательные требования:
- -теплоизоляционный материал должен соответствовать по своим техническим характеристикам условиям эксплуатации;
- -монтажные работы по теплоизоляции трубопроводов должны производить квалифицированные специалисты, имеющие опыт работы в данной области.
- Монтаж теплоизоляции в подавляющем большинстве случаев производится уже после монтажа трубопровода на место эксплуатации. Однако, допустима теплоизоляция трубопроводов и до его монтажа на место. В обоих случаях должна быть обеспечена определенная подготовка:
- -изолируемая поверхность должна быть полностью подготовлена, т. е. закончены все необходимые слесарные и сварочные работы;
- -трубопровод должен быть проверен и испытан на плотность и прочность;
- -должна быть произведена антикоррозионная обработка ( при необходимости, в зависимости от способа теплоизоляции).
Теплоизоляционные цилиндры
Это наиболее производительный способ теплоизоляции. Монтаж осуществляется цилиндрами ПЦ-100, скорлупами ППУ и др. При монтаже цилиндрами их подгоняют вплотную друг к другу и закрепляют конструкцию бандажами. Сами бандажи крепятся специальными пряжками.
При теплоизоляции труб полуцилиндрами из жестких материалов, их закрепляют насухо или на мастике. Для трубопровода холодного водоснабжения в качестве теплоизолятора применяются, как правило, гидрофобизированные цилиндры.
В этом случае предусматривается обязательный слой пароизоляции, швы которого тщательно герметизируются. Если используются цилиндры, покрытые алюминиевой фольгой (кашированные), то их можно применять без защитного пароизоляционного покрытия, герметизируя швы и стыки самих цилиндров.
Важно
Кашированные цилиндры обычно применяются при монтаже теплоизоляции трубопроводов, прокладываемых внутри помещений: на чердаках, в подвалах и др. Во избежание повреждений алюминиевой фольги, под защитное покрытие подкладывается предохранительный слой, закрепляемый бандажами.
На вертикальных участках трубопроводов через каждые 3-4 метра устанавливаются специальные разгружающие устройства, предотвращающие сползание теплоизоляционного слоя.
Цилиндры из базальтового волокна – экологически чистый, эффективный и пожаробезопасный теплоизоляционный материал, пользующийся повышенным спросом благодаря гидрофобным и отличным теплоизоляционным качествам, сопоставимым с импортными материалами, такими, как вспененный каучук и полистирол. А умеренная стоимость делает его прекрасным выбором для использования в системах холодного водоснабжения. Для удобства монтажа цилиндры из минеральной ваты на основе волокна из горных пород имеют продольный разрез. Имеют самую широкую область применения: теплоизоляция труб на различных промышленных объектах и в строительстве, теплоизоляция трубопроводов холодного, горячего водоснабжения, отопления, газопроводов и паропроводов, а также дымоходов и дымовых труб. Для трубопроводов горячего и холодного водоснабжения, тепловых сетей применяются исключительно гидрофобизированные цилиндры.
Преимущества теплоизоляционных цилиндров:
- -низкая теплопроводность;
- -химическая инертность в отношении масел, растворителей, щелочей и кислот; -биологическая стойкость;
- -термостойкость (температура плавления базальтового волокна более 1000 градусов);
- -долговечность;
- -механическая стойкость;
- -простота монтажа (надрез по всей длине позволяет легко монтировать их на трубе с последующим закреплением либо клипсами, если цилиндр не каширован, либо алюминиевым скотчем, если цилиндр каширован). Цилиндры легко разрезаются на отрезки необходимой для утепления длины.
Источник: http://www.burimskvazhinu.ru/index.php/montaj/teploizolacia-truboprovodov
Тепловая изоляция оборудования и трубопроводов: СНиП, характеристики, виды теплоизоляции и требования к ним
Необходимо учитывать не только конструктивные особенности оборудования и трубопроводов, когда выбирается подходящей тип изоляционного материала, но и другие факторы. Этого требует СНиП для тепловой изоляции оборудования и трубопроводов.
Смотрите актуальный СНиП в формате pdf – СП 61.13330.2012 Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003
Рассмотрим факторы, влияющие на выбор изоляционных материалов.
- Целевое назначение самих изоляционных материалов.
- Пространственную ориентацию.
- Возможные атмосферные воздействия.
Какие требования предъявляются к тепловой изоляции трубопроводов и оборудования, рассмотрим ниже в данной статье.
Какую функцию выполняет защита?
Одно из назначений тепловой изоляции оборудования и трубопроводов – в снижении величин по тепловым потокам внутри конструкций. Материалы покрываются защитно – покровными оболочками, которые гарантируют полную сохранность слоя, в любых условиях эксплуатации.
Большое внимание вопросам тепловой изоляции уделяют в разных направлениях промышленности и энергетики. В сооружениях и оборудовании в этих отраслях именно тепловая изоляция становится одним из наиболее важных компонентов.
Результатом становится не только снижение потерь по теплу при взаимодействиях с окружающей средой. Но и расширение возможностей по сохранению оптимального теплового режима.
Тепловая изоляция трубопроводов и её суть
Применяя изоляцию теплового вида, производители облегчают себе осуществление тех или иных процессов по технологии. Это решение широко используется во многих сферах промышленности:
- Металлургической.
- Пищевой.
- Нефтеперерабатывающей.
- Химической.
Но большего внимания изоляция удостаивается от представителей энергетики. В данном случае объекты теплоизоляции имеют вид:
- Труб для дыма.
- Устройств по обмену тепла.
- Аккумуляторных баков, где хранится горячая вода.
- Турбин с газом и паром.
Тепловая изоляция трубопроводов используется на аппаратах, которые располагаются как в вертикальной, так и в горизонтальной плоскостях. Это актуальное решение для теплоизоляции оборудования, например резервуаров, в которых хранится вода вместе с теплоносителями. Ряд жёстких требований предъявляется к эффективности изоляционных покрытий.
Какие именно требования предъявляются в данной сфере?
Перечень необходимых требований к материалам составляется на основе влажностных, механических, температурных и вибрационных нагрузок, которые испытывают конструкции во время монтажа. К теплоизоляционному покрытию предъявляется следующий ряд требований:
- Эффективность в теплотехническом смысле.
- Высокие показатели безопасности, в плане экологии и воздействия огня.
- Долговечность вместе с эксплуатационной надёжностью.
Изоляция и СНиПы
СНиПы – это разновидности нормативных документов. В производстве они получили достаточно широкое распространение. Благодаря использованию СНиПов есть возможность выполнить теплоизоляцию по всем нормам относительно плотности. Учитывается и такой показатель, как коэффициент теплопроводности для различных типов.
Видео
Например, отдельные требования СНиП предъявляют к поверхностям, которые имеют температуру не больше 12 градусов. В данном случае обязательным требованием становится наличие пароизоляционного слоя.
Расчёт проводится по специальной процедуре с поверхностями, у которых нет определённого температурного режима. И которые слишком быстро меняют технические характеристики.
Порядок проведения расчётов
Без выполнения расчётов нельзя выбрать оптимальный материал, определить подходящую толщину. Без этого невозможно определить, какой плотностью будет обладать тепловая изоляция оборудования и трубопроводов. Среди факторов, оказывающих влияние на конечный результат подсчётов:
- проведение тепла.
- Способность защищать от деформаций.
- Воздействия механического типа.
- То, какой является температура на изолируемых поверхностях.
- Вибрация на оборудовании и возможность его появления.
- Температурный показатель в окружающей среде.
- Предел по допустимой нагрузке.
Не обойтись и без учёта нагрузки, которая возникает при взаимодействии оборудования или трубопроводов с окружающим грунтом и транспортными средствами, которые проходят по поверхности. Специальные формулы используются для любых систем по передаче тепла, которые бывают стационарными, нестационарными.
Представляем серию формул для самостоятельного расчета толщины теплоизоляции.
Расчёт для теплоизоляции искусственно адаптируется ко всем условиям эксплуатации, характерным для того или иного и трубопровода или оборудования. Сами условия формируются при участии:
- Строительных материалов для подготовки к сменам времён года.
- Влажности, способствующей ускорению теплообмена.
Профессиональные компании предоставляют исполнителям инженерные данные для будущего строительства. Какие именно требования оказывают наибольшее влияние на выбор подходящих изоляционных покрытий?
- Теплопроводность.
- Звукоизоляция.
- Возможность поглощать или отталкивать воду.
- Уровень паропроницаемости.
- Негорючесть.
- Плотность.
- Сжимаемость.
О толщине изоляции трубопровода и оборудования
Обязательно опираться на нормативы, чтобы определить допускаемую толщину для каждого конкретного оборудования. В них производители пишут о том, какая плотность сохраняется в тепловом потоке. В СНиПах приводятся алгоритмы решения разных формул вместе с самими формулами.
Видео
Для выявления минимума толщины трубопроводов в том или ином случае определяют предел по допустимым значениям потерь на тех или иных участках.
Полиуретановая изоляция
Трубопроводы с данным типом изоляции используются, когда надо укладывать конструкцию над поверхности земли, бесканального типа. При изготовлении стараются внедрить как можно больше новых технологий.
Из материалов к процессу допускаются только обладающие максимально высоким качеством. Заблаговременно их подвергают испытаниям в большом количестве, согласно СП, тепловая изоляция оборудования и трубопроводов не допускает брака.
Использование пенополиуретана позволяет снижать тепловые потери. И обеспечивает долговечность для самого материала теплоизоляции. В состав пенополиуретана входят экологически чистые компоненты. Это Изолан-345, а так же Воратек CD-100. По сравнению с минеральной ватой, теплоизоляционные характеристики пенополиуретана гораздо выше.
ППМ и АПБ изоляция
На протяжении более чем тридцати лет в трубопроводах используется так называемая пенополименарльная изоляция. Основным видом в данном случае выступает полимербетон. Его характеристики можно описать следующим образом:
- Включение в группу Г1 при испытаниях на горючесть согласно действующим ГОСТам.
- Температурный режим эксплуатации, позволяющий поддерживать 150 градусов.
- Наличие структуры интегрального типа, которая совмещает в себе функции покрытия для гидроизояции вместе со слоем изоляции от тепла.
Некоторые региональные производители до недавнего времени занимались выпуском армопенобетонной изоляцией. У этого материала очень низкая плотность. А теплопроводность, наоборот, приятно удивляет.
Видео
АПБ обладает следующим набором преимуществ:
- Долговечность.
- Гидрозащитное покрытие с высокой паропроницаемостью.
- Оборудование не подвергается коррозии.
- Способность трубопровода выдерживать высокие температуры.
- Сопротивляемость огню.
Такие трубы хороши тем, что их можно применять для теплоносителя практически любой температуры. Это касается как сетей не только с водой, но и с паром. Вид прокладки не имеет значения.
Допустимо даже совмещение с подземной бесканальной и канальной разновидностями. Но продукция с ППУ теплоизоляцией всё ещё считается более технологичным решением.
О коэффициенте теплопроводности
Оборудование, пока оно эксплуатируется, становится возможным увлажнение – вот что больше всего влияет на расчётный коэффициент теплопроводности.
Видео
Особые правила существуют для принятия коэффициента, который предполагает увеличение теплопроводности изоляционных покрытий. Основываются при этом на ГОСТах и СНиПах, но не обойтись и без других факторов:
- влажность грунта согласно СП.
- Разновидности, к которой относится материал для теплоизоляции.
Коэффициент равняется единице, если речь идёт о трубах с ППУ-изоляцией, в оболочке из полиэтилена высокой плотности. Не важно, каков уровень влажности в грунте, где установлено оборудование. Другим будет коэффициент у оборудования и труб с изоляцией АПБ, имеющих интегральную структуру. И допускающих возможность того, что изоляционный слой может высохнуть.
- 1,1 – уровень коэффициента для конструкций, размещённых в грунтах с большим количеством воды, согласно СП.
- 1,05 – для грунтов, где количество воды не такое большое.
При практических расчётах используются специальные инженерные методики. Они обычно учитывают сопротивления внешним воздействиям из окружающей среды. Двухтрубная прокладка предполагает учёт взаимного теплового влияния каждого из элементов на другие.
Оптимальная толщина и дополнительные рекомендации
Одним из определяющих факторов при выборе подходящей толщины становится фактор стоимости. А данные показатели могут определяться индивидуально для каждого конкретного региона.
Видео
Есть и другие параметры, которые имеют значения. Вроде расчётной температуры теплоносителя. Важно и то, на каком уровне находится температура в окружающей среде.
Каких ещё правил надо придерживаться?
Производством оборудования и труб вместе с теплоизоляцией занимаются не только российские, но и зарубежные производители.
Некоторые технологические трубопрокатные линии способны за одни сутки выпускать общего объема до трёх километров трубопроката (с длиной самой трубы до 12 метров). Диаметр продукции находится в пределах 57-1020 миллиметров. Защитная обёртка бывает полиэтиленовой, либо металлической.
Но до сих пор существуют определённые недостатки, которые не удаётся устранить на этапе производства. Их выявили специалисты, путём неоднократных практических испытаний.
- В процессе транспортировки труб с металлическим покрытием могут появляться деформации в изоляционном покрытии.
- Полиуретановая изоляция отслаивается от трубы, которая подвергается термической обработке.
- Защитная конструкция отсоединяется от внешних или внутренних слоёв трубы.
Главной проблемой считается способность металлических трубопроводов расширяться. Температурный нагрев приводит к тому, что качественные характеристики портятся. Потому важным фактором становится защита от таких видов воздействия.
На стабильность и устойчивость теплоизоляции объекта наибольшее влияние оказывает длина самой трубы. Не важно, для передачи какого носителя она используется. Чем больше длина – тем выше вероятность, что слой просто разрушится.
Потому и данный параметр необходимо выбирать как можно тщательнее. Сами специалисты разработали оптимальные показатели длины и диаметров труб, которые позволят сохранить конструкцию вне зависимости от того, в каких эксплуатационных условиях она находится.
Они опираются только на СНиП, ведь тепловая изоляция оборудования и трубопроводов особенно требовательна к соблюдению правил.
Записи по теме:
(2
Источник: https://trubanet.ru/stalnye-truby/teplovaya-izolyaciya-oborudovaniya-i-truboprovodov-snip-kharakteristiki-vidy-teploizolyacii-i-trebovaniya-k-nim.html
Для чего нужно теплоизолировать трубопроводы?
Нам часто задают вопрос: «Зачем нужна теплоизоляция? Ведь тепло от труб все равно остается внутри дома. А мы можем сэкономить и на материалах и на стоимости работ». В этой статье мы постараемся объяснить, зачем вообще нужна теплоизоляция. Прежде всего, следует иметь в виду, что изоляция труб имеет в различных системах дома различное назначение:
• в системах отопления – для концентрации тепловыделения на радиаторах;
• в системах холодного водоснабжения – для обеспечения требуемой температуры холодной воды;
• в системах горячего водоснабжения – для повышения эффективности использования водогрейного бойлера;
• уличных трассах – для экономии топлива;
• в системах канализации – в специальных случаях.
Поясню сказанное подробнее.
Теплоизоляция в системе отопления. Для того, чтобы в Вашем доме было комфортно, воздух в нем должен быть теплым. Основное назначение радиаторов отопления – как можно более эффективно нагревать воздух. Очевидно, что чем горячее радиатор, тем лучше его теплоотдача.
Тепло, теряющееся «по дороге» от неизолированных труб расходуется в основном на нагрев стен и технических проемов, тепло от которых доходит до помещений медленно, буквально сутками. По сравнению с бетоном, радиатор практически не имеет тепловой инерционности и нагревает комнату гораздо быстрее.
Совет
Когда в комнате жарко, термостат выключит радиатор, и комната охладится опять же гораздо быстрее, чем в случае, когда в ней прогреты еще стены и полы. В общем, «тепло должно выделяться на тепловых приборах».
Существует еще одна опасность, с которой часто встречаются люди, проложившие неизолированные трубопроводы внутри бетонных или кирпичных стен. Зимой бывает так, что мороз проникает в уличные стены дома почти до самых отапливаемых помещений.
В этом случае, если зона промороженной стены доходит до неизолированного трубопровода, то замерзают не только водопроводы, но даже и трубы отопления. А растопить пробку в замурованной трубе в отделанном помещении – задача весьма непростая.
Теплоизоляция в системе холодного водоснабжения. В современных домах трубопроводы прокладываются, как правило, в общих шахтах и штробах.
Если трубы не изолированы, то за время, пока разбора холодной воды нет (за ночь, или за время Вашего отсутствия) холодный водопровод от соседних горячих труб нагревается, и, открыв холодный кран, Вы с удивлением замечаете, что из него течет хорошо нагретая, а иногда просто горячая вода.
А так как за ночь нагревается не только вода в трубе, но и сама труба, и штукатурка вокруг нее, то ждать холодной воды приходится подчас по пять и более минут. Самый же интересный эффект получается от смыва горячей водой унитаза, когда насыщенный запахами пар внезапно заполняет помещение санузла.
Изоляция труб холодного водоснабжения также полезна и тем, что не допускает к холодным трубам естественную влажность воздуха. Вы, вероятно, не раз замечали, как отпотевает в теплом помещении любая холодная поверхность.
Так же отпотевает поверхность труб, по которым постоянно течет холодная вода – например, на узле ввода в частный дом воды от скважины или колодца. Если такие трубы не изолировать, то под ними всегда будут накапливаться лужицы. Это особенно неприятно, когда такая труба проходит над подшивным или натяжным потолком, выполненным из дорогих материалов.
Обратите внимание
Теплоизоляция в системе горячего водоснабжения. В циркуляционных системах горячего водоснабжения отсутствие изоляции потребует дополнительной энергии для обогрева бойлера, готовящего горячую воду – ровно настолько, чтобы скомпенсировать потери тепла с неизолированных труб.
В тупиковых системах горячего водоснабжения неизолированные трубы практически полностью теряют свою температуру в течение 30 минут, тогда как изолированная труба остывает примерно в четыре раза медленнее.
И опять же, как и в случае с циркуляционной системой, все потери тепла будет компенсировать бойлер за Ваш счет.
Бывает так, что приведенные выше аргументы человека не убеждают, и повторяется довод, что, пускай, мол, тепло выделяется – я все равно отапливаю дом, так не все ли равно, откуда тепло берется? Безусловно, такой Заказчик отчасти прав. Зимой. А как быть летом, когда отопление не требуется?
Теплоизоляция уличных трасс. Этот раздел касается ситуаций, когда на участке есть несколько отапливаемых строений, получающих тепло от общей котельной (например, дом и отдельно расположенная обогреваемая баня).
Теплоизоляция не гарантирует от замерзания, а только отдаляет его момент. Неизолированная труба в промороженном грунте замерзнет через сутки, а изолированная – через двое, но замерзнет все равно.
Если по различным причинам трубопровод монтируется в зоне промерзания грунта (на глубине мельче, чем 1,3 метра), то нельзя рассчитывать на одну только теплоизоляцию, а необходимо между ней и трубой дополнительно проложить греющую электроленту или спутник от системы отопления. И, наверное, каждому ясно, что чем толще теплоизоляция на уличных трассах, тем меньше Вы расходуете денег на топливо.
Теплоизоляция в системе канализации.
Утепление канализационных труб требуется в редких случаях, когда они прокладываются на небольшой глубине (мельче 0,5 метра), или когда трубопровод от напорной канализации (после сололифта, или фекального насоса) прокладывается на глубине мельче 1,3 метра.
Важно
В первом случае теплоизоляция нужна, чтобы предотвратить образование ледяного нароста в промерзшей насквозь канализационной трубе, во втором – т.к. напорная канализация подчиняется упомянутым выше правилам прокладки трубопроводов водоснабжения.
И еще одно замечание. Трубопроводы водоснабжения и отопления, замурованные в стену, не теряют своей способности к температурному расширению. Если изоляция отсутствует, тогда эти усилия начинает принимать на себя тонкий слой штукатурки или стяжки. Вы не раз, вероятно, видели на оштукатуренных стенах трещины, идущие вдоль замурованных труб.
Применение же теплоизоляции оставляет зазор между трубой и бетоном, чем сильно снижает вероятность появления подобных трещин. Если ко всему сказанному прибавить невысокую стоимость трубной изоляции, то становится ясно, что при длительной эксплуатации выгоды от ее применения значительно больше, чем разовая экономия на этапе монтажа трубопроводов.
Источник: http://profsantehnik.by/poleznaya-informaciya/dlya-chego-nuzhno-teploizolirovat-truboprovody-sis
5.8. Тепловая изоляция, обогрев
5.8.1. Необходимость применения тепловой изоляции определяется в каждом конкретном случае, в зависимости от свойств транспортируемых веществ, места и способа прокладки трубопровода, требований технологического процесса и требований безопасности труда и взрывопожаробезопасности.
5.8.2. Тепловой изоляции трубопроводы подлежат в следующих случаях:
при необходимости предупреждения и уменьшения тепло- или холодопотерь (для сохранения температуры, предотвращения конденсации, образования ледяных, гидратных или иных пробок и т.п.);
при температуре стенки трубопровода за пределами рабочей или обслуживаемой зоны выше 60 град. С, а на рабочих местах и в обслуживаемой зоне при температуре выше 45 град. С — во избежание ожогов;
при необходимости обеспечения нормальных температурных условий в помещении.
В обоснованных случаях теплоизоляция трубопроводов может заменяться ограждающими конструкциями.
5.8.3. Тепловая изоляция трубопроводов должна соответствовать требованиям нормативно-технической документации.
5.8.4. При прокладке трубопровода с обогреваемыми спутниками тепловая изоляция осуществляется совместно с обогреваемыми спутниками.
Необходимость обогрева, выбор теплоносителя, диаметр обогреваемого спутника и толщина теплоизоляции определяются проектом на основании соответствующих расчетов.
5.8.5. Тепловая изоляция трубопроводов осуществляется после испытания их на прочность и плотность и устранения всех обнаруженных при этом дефектов.
Обогревающие спутники также должны быть испытаны и приняты комиссией по акту до нанесения тепловой изоляции.
При монтаже обогревающих спутников особое внимание должно быть обращено на отсутствие гидравлических «мешков» и правильное осуществление дренажа во всех низших точках.
5.8.6. В теплоизоляционных конструкциях трубопровода следует предусматривать следующие элементы:
основной теплоизолирующий слой;
армирующие и крепежные детали;
защитно-покровный слой (защитное покрытие).
В состав теплоизоляционных конструкций трубопроводов с температурой транспортируемых веществ ниже плюс 12 град. С должен входить пароизоляционный слой. Необходимость в пароизоляционном слое при температуре транспортируемых веществ свыше плюс 12 град. С определяется расчетом.
При отрицательных рабочих температурах среды проектом тепловой изоляции должны предусматриваться тщательное уплотнение всех мест соединений отдельных элементов и герметизация швов при установке сборных теплоизоляционных конструкций.
5.8.7. Для арматуры, фланцевых соединений, компенсаторов, а также в местах измерения и проверки состояния трубопроводов должны предусматриваться съемные теплоизоляционные конструкции. Толщина тепловой изоляции этих элементов должна приниматься равной 0,8 толщины тепловой изоляции труб.
5.8.8. Для трубопроводов с рабочей температурой выше плюс 250 град. С и ниже минус 60 град. С не допускается применение однослойных теплоизоляционных конструкций из формованных изделий (перлитоцементных, известковокремнеземистых, совелитовых, вулканитовых).
5.8.9. Не допускается применять элементы теплоизоляционных конструкций из сгораемых материалов для трубопроводов групп А и Б, а также трубопроводов группы В при надземной прокладке, для внутрицеховых, расположенных в тоннелях и на путях эвакуации эксплуатационного персонала (коридорах, лестничных клетках и др.).
5.8.10. Для трубопроводов, транспортирующих активные окислители, не допускается применять тепловую изоляцию с содержанием органических и горючих веществ более 0,45% по массе.
5.8.11. Теплоизоляционные материалы и изделия, содержащие органические компоненты, допускаются к применению на трубопроводах с рабочей температурой выше 100 град. С при наличии соответствующих обоснований.
5.8.12. Для трубопроводов, подверженных вибрации, не рекомендуется предусматривать порошкообразные теплоизоляционные материалы, минеральную вату и вату из непрерывного стеклянного волокна.
Сама по себе технология предельно проста: цилиндр просто надевается на трубу и закрепляется — вот и весь процесс. Чтобы сформировать изоляцию на отдельном участке трубопровода, обычно требуется всего два сегмента.
Блок: 1/2 | Кол-во символов: 215
Источник: https://domidei.ru/articles/osnovnye-pravila-montaga-trubnoi-teploizolyacii
Содержание
- 1 Способы прокладки труб
- 2 Функции изоляции
- 3 Требования к материалам
- 4 Утепление подземных сетей
- 4.1 Облегающий эффект
- 5 Теплоизоляция минеральной ватой
- 5.1 Теплоизоляция наружных трубопроводов
- 6 Виды покрывающих слоев
- 7 Скорлупа из пенополистирола
- 8 Варианты тепловой защиты
- 8.1
4.1
Открытое расположение - 8.2
4.2
Подземный способ
- 8.1
- 9 Пенополистирол (пенопласт, ППС)
- 9.1 Монтаж
- 10 Утеплители из стекловолокна
- 11 Вспененный полиэтилен
- 11.1 Монтаж
- 12 Стекловата
- 13 Вспененный каучук
- 14 Составление сметы для утепления трубопровода
- 15 Как проводятся работы по изоляции трубопроводов
- 16 Заключение
- 17 Краткое устройство теплоизоляции трубопроводов
Способы прокладки труб
На улице изоляция трубопроводов отопления требуется и при открытом наземном размещении, и при скрытой прокладке – под землей. Последний способ бывает канальным – в траншею сперва укладывается железобетонный желоб, а в нем уже размещаются трубы. Бесканальный способ размещения – непосредственно в грунте. Применяемые изоляционные материалы различаются не только по теплопроводности, но и паро-, водонепроницаемости, долговечности и способам монтажа.
Не столь очевидна необходимость утепления труб холодного водоснабжения. Однако без нее не обойтись в том случае, когда водопровод проложен открытым наземным способом — трубы требуется защищать от промерзания и последующего повреждения. Но и внутри зданий изолировать трубы водопровода тоже приходится –- для предотвращения конденсации влаги на них.
Блок: 2/10 | Кол-во символов: 818
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Функции изоляции
Покрытие труб на улице помогает избежать неприятных последствий от снижения температуры теплоносителя. Качественная изоляция минимизирует разницу показателя на выводе из котельной и в точке входа в строение. Функции покрывающего слоя:
- 1. Защита от ожогов при контакте с поверхностью коллектора. Оболочка труб нагревается до высоких температур. Если участок находится в поле досягаемости, то человек при случайном прикасании к нему может обжечься.
- 2. Уменьшение утечек тепла. Транзитная окружающая среда забирает часть энергии при поступательном движении теплоносителя. Изоляция препятствует энергетическому обмену с внешним воздухом, землей и другими факторами.
- 3. Предупреждение промерзания в условиях остановки котельной. При прекращении работы котла в трубах остается немного жидкости, которая при низких температурах замерзает и разрывает стенки трубопровода. Слой материала уберегает внутреннее пространство в коллекторе от замерзания.
- 4. Препятствие появлению конденсата снаружи труб. При разнице температур теплоносителя и окружающего воздуха возникают капельки влаги, из-за которых начинается коррозия. В утепленных трубах этого не случается.
- 5. Уменьшение деформационных усилий от нагревания. Магистрали проходят не только в воздухе, но и располагаются в перегородках и междуэтажных перекрытиях. Трубы под действием тепла расширяются и разрушают конструкции. Применение изоляционного слоя сводит амплитуду деформационного движения к нулю.
Секреты правильной пайки полипропиленовых труб своими руками
Блок: 2/6 | Кол-во символов: 1521
Источник: https://oventilyacii.ru/otoplenie/vidy-teploizolyatsii-trub.html
Требования к материалам
Чтобы слой утепления труб отопления на поверхности выполнял необходимые функции, к нему предъявляются определенные требования. Их описание находится в сборнике СНиП 2.04.14−88, где описаны виды изоляции, нормативные показатели термостойкости и удельной теплопроводности. Соответствие характеристик материала требованиям документа переводит его в категорию допустимых к использованию. При выборе способа утепления учитывают факторы:
- диаметр отопительного коллектора;
- условия работы и область расположения системы;
- температура жидкости в трубах;
- теплопроводность изоляции;
- воздухонепроницаемость слоя;
- гидрофобность материала;
- устойчивость к возгоранию, химическому воздействию, восприимчивости ультрафиолета;
- паропроницаемость;
- срок предполагаемой эксплуатации.
Виды пластиковых труб для системы отопления
Блок: 3/6 | Кол-во символов: 820
Источник: https://oventilyacii.ru/otoplenie/vidy-teploizolyatsii-trub.html
Утепление подземных сетей
Тепловая изоляция – обязательное условие при прокладке и системы водоснабжения, и систем канализации. Утепление трубопроводов поможет избежать в зимнее время промерзания и исключить потери тепла.
Все работы по изоляции должны осуществляться согласно требованиям, четко сформулированные и прописанные в СНиП.
Требования к тепловой изоляции
В нормативных документах содержится подробная информация о материалах и методах осуществления работ. Здесь же обозначены применяемые стандарты к контурам теплоизоляции, представлены определенные рекомендации.
Блок: 3/10 | Кол-во символов: 576
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Облегающий эффект
Для надёжности стыковки края элементов имеют стыковочные пазы «в четверть». Для изоляции изгибов используются готовые сегменты или режут обычные полуцилиндры на отрезки требуемого размера и формы.
Стандартная длина полуцилидров и сегментов 1000 мм. Наиболее популярны 4 типоразмера труб: 32 мм или 50 мм для водопровода и 110 мм или 160 мм для канализации. Это расчётный диаметр трубы. Обычно достаточно толщины изоляции в 50 мм, но она может быть и больше.
По согласованию с заказчиком существует возможность изготовить изделия любой длины, диаметра и толщины. Кроме цилиндрических стандартных изделий, под заказ выполняется разработка и изготовление изделий различных форм — тройники, отводы, изоляция для ёмкостей, хранилищ, септиков.
Для получения максимального эффекта при монтаже трубной теплоизоляции следует соблюдать ряд правил и последовательность работ:
Скорлупы лучше всего располагать на трубе в положении «9/15» по часовой стрелке. В этом случае утепляющий контур формируется нижним (относительно трубопровода) и верхним полуцилиндром. Поперечные швы верхнего и нижнего ряда с целью исключения прямых утечек тепла следует укладывать со смещением продольных стыков друг относительно друга на половину длины теплоизоляционных изделий.
Скорлупы должны тесно прилегать по пазам друг к другу, как в продольном, так и в поперечном направлении. Скорлупы необходимо зафиксировать через каждые 0,5 м по длине трубы поперечными стяжками: ПЭТ лентой, скобами, хомутами, армированным или алюминиевым скотчем или даже проволокой. Это будет препятствовать провисанию или смещению изделий относительно трубы. В данном случае следует руководствоваться правилом: чем больше диаметр теплоизоляции, тем больше стяжек должно быть.
Для дополнительной гидрозащиты поперечные стыки изделий, а так же продольные стыки следует проклеить армированным или алюминиевым скотчем. Места сопряжения изделий (стыки) можно промазать специальным клеем, подходящим для экструзионного пенополистирола: на цементной, полиуретановой или акриловой основе. При отсутствии необходимости быстрого доступа к трубопроводу на внутреннюю поверхность полуцилиндров может наноситься клеевой слой. Однако при необходимости ремонта скорлупу придётся срезать.
При укладке трубопровода в траншею трубы с смонтированной на них теплоизоляцией укладывают прямо на песчаную подушку (толщиной не менее 100 мм), находящуюся на предварительно выровненном дне траншеи. Поверх трубы насыпается ещё 100-200 мм песка, после чего траншея закапывается.
При теплоизоляции надземного трубопровода имеет смысл защитить утеплитель дополнительным покрытием (например, оцинковкой), чтобы уберечь поверхность от ультрафиолета и тем самым предотвратить ускоренное старение материала. Следует утеплять и те участки трубопровода внутри дома, которые могут попасть в зону отрицательных температур. Это касается любых неотапливаемых технических помещений, подвала, чердака и других пространств.
В последние годы большой популярностью пользуется утепление водопроводных и сточных труб с использованием специального подогревающего электрокабеля. Особенно это актуально для нашего региона с суровой порой зимой, когда инженерные коммуникации частного дома испытывают на себе всю силу морозной стихии.
На рынке встречается самостоятельно регулирующий температуру нагрева кабель, который при повышении температуры окружающей среды не отключает питание, в результате происходит значительный перерасход электроэнергии. В целях экономии необходимо установить термореле. И понятно, что простой подогрев трубы без монтажа качественной теплоизоляции приведёт лишь к неконтролируемым расходам.
В качестве дополнения стоит добавить, что все проложенные под землёй коммуникации, такие как трубы или провода, стоит заранее отметить «сигнальной» лентой. Её укладывают в 20-25 см над трубой. Через несколько лет, когда возникнет необходимость заняться переустройством участка, она окажутся весьма кстати.
Блок: 2/2 | Кол-во символов: 3957
Источник: https://domidei.ru/articles/osnovnye-pravila-montaga-trubnoi-teploizolyacii
Теплоизоляция минеральной ватой
Минеральная вата из всех представленных на сегодня видов утеплителя характеризуется наименьшей стоимостью, плюсом является и несложность монтажа изоляции. Теплоизоляция трубопроводов минеральной ватой — процесс:
- рулон ваты нарезается полосами 200 мм толщиной (поперек) и ими далее обматывают трубы, вначале слоем минеральной ваты (толщиной 100 мм), поверх – плотно слоем стеклоткани;
- минеральную вату следует укладывать равномерно, она не должна сминаться.
Минеральная вата рассматривается как теплоизоляция трубопроводов значительного диаметра, применима для трасс отопления городских сетей и для систем канализации, для канализационных систем малого диаметра и для труб водоснабжения – не практикуется.
Теплоизоляция наружных трубопроводов
Выбор термоизоляционных материалов при наружной прокладке труб отопления – достаточно велик и предлагаются в виде матов рулонного типа.
Податливость материала позволяет придавать им фигурную форму для удобства монтажа, предлагаются утеплители, наносимые в жидком виде, их дальнейшие качества проявляются после застывания.
Съемная теплоизоляция в оцинкованном кожухе широко применяется на линейных участках трубопроводов.
Пенокаучук в виде трубок или рулонов в зависимости от диаметра труб применяют как теплоизоляцию труб и деталей технологических трубопроводов, устанавливается в несколько слоев, в зависимости от необходимой толщины тепловой изоляции.
Интересным методом для теплоизоляции считается покровный слой, с видами которого реально ознакомиться на сайте:
Термоизоляционные материалы, применяемые на трубопроводах, проложенных на открытом воздухе и непосредственно по поверхности земли, позволят горячей воде не остыть на пути к потребителю, причем утепляются все виды труб:
- пластиковые;
- металлические;
- полимерные;
- металлопластиковые;
- композитные.
Причем при самостоятельной термической изоляции коммуникаций в частном доме проще работать с предизолированными трубами и самоклеящейся изоляцией, а в качестве помощника для устранения недочетов рекомендуется использовать дополнительную обмотку, например, алюминиевый скотч.
Расчет потери тепла. С методикой расчета возможных потерь тепла трубопроводом с учетом фактических температур теплоносителя и воздуха окружающего систему, свойства и толщину тепловой изоляции можно ознакомиться здесь:
Теплоизоляционные материалы для трубопроводов, среди которых пенополиуретан и стекловата, по всем своим качествам являются высокоэффективными изолирующими материалами.
Блок: 5/10 | Кол-во символов: 2499
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Виды покрывающих слоев
Разработано несколько принципиально отличающихся один от другого типов утеплителя. Они наносятся разными способами и имеют различные технические характеристики. Используются следующие виды утеплителей:
- рулонные;
- листовые маты;
- жесткие сегменты;
- напыляемые жидкие.
Утеплитель труб отопления в рулонах выпускается в виде свернутой полоски. Каждый вид материала имеет свою ширину и толщину, в его основе может использоваться фольгированный слой. Иногда в составе имеется полиэтилен, дающий дополнительный функциональный слой, но чаще применяется стекловата, минеральная вата или фольгированный пенофол. При монтаже материала его надежно прикрепляют к поверхности коллектора.
На наклонных трубах рулонные материалы укладывают спиральным методом. На горизонтальных участках их монтируют продольно со стыками и закрепляют проволокой или специальными хомутами. Фольгированный слой кладется наружу, обеспечивая защиту от атмосферной влаги. От выпадающих осадков рулонную изоляцию защищают дополнительными оцинкованными кожухами, устанавливаемыми поверх утеплителя.
К распространенным листовым материалам относят пенополистирол и пенопласт. Эти материалы эффективны с точки зрения сохранения тепла, но их монтаж представляет определенные трудности в части обеспечения герметичной оболочки. Располагаются листы продольно, крепятся вязальной проволокой, бандажами или скобами. Для предохранения от влаги поверх них делают защитные кожухи из нержавеющей оцинковки.
Твердые оболочки в виде кожуха являются полыми цилиндрическими элементами, стенки которых имеют разную толщину в зависимости от вида. На торцах и по длине есть разрезы с замковой стыковкой. Для каждого размера труб выпускают кожухи определенного диаметра.
Слой материала бывает мягким и твердым. В зависимости от этого выпускают жесткие оболочки из пенополистирола, пенополиуретана, пенопласта и мягкие кожухи в виде полимерного слоя. Кожухи имеют преимущества в том, что обеспечивают полную герметичность, держат форму, монтируются с малыми затратами труда.
Жидкие утеплители бывают окрашивающими и напыляющими. Первый вид наносится кистью или валиком, создавая герметичный слой. Для этой цели обычно применяется термокраска. Напыление оболочки делается специальным оборудованием, толщина наращивается постепенно и равномерно. Часто используется пеноизол, который закрывает все мелкие щели. Недостатком жидких оболочек является их дороговизна.
Технические характеристики металлопластиковых труб для отопления
Блок: 4/6 | Кол-во символов: 2476
Источник: https://oventilyacii.ru/otoplenie/vidy-teploizolyatsii-trub.html
Скорлупа из пенополистирола
Это усовершенствованная разновидность пенопласта, применяемая для предизолированных труб или утеплителей в виде цилиндров и полуцилиндров. Возможно повторное использование, если приходится раскрывать трубопровод для устранения течи или демонтажа. Выпускается с внешним защитным слоем или без такового.
Монтаж: Укладку скорлупы делать проще всего, благодаря хорошо продуманной форме выпуска. Пенополистироловые цилиндры подходят для наземных коммуникаций и подземной (канальной) укладки труб. Они охватываются половинками скорлупы, подходящей по ширине трубы и закрепляются. Фольгированный скотч накладывается по спирали плотно прилегающими слоями.
Чтобы обеспечить «перехлест» фрагментов скорлупы при монтаже теплоизоляции трубопроводов, половинки лучше сдвигать относительно второй части. После обмотки фольгированным скотчем утепление можно считать завершенным.
Важно знать! Подобно половинкам скорлупы из пенополистирола, укладывают формованные полуцилиндры из других материалов, таких как вспененный каучук или пенопласт. Вспененный полиэтилен выпускается в виде многокомпонентной основы для фольгированных утеплителей. А без дополнительного слоя постепенно деформируется, слеживается и расползается на стыке.
Фабричная «скорлупа» из пенополистирола монтируется легко, благодаря специальным пазам на каждом сегменте
Блок: 5/7 | Кол-во символов: 1348
Источник: http://TrubaMaster.ru/uteplenie/montazh-teploizolyacii-truboprovodov.html
Варианты тепловой защиты
Иногда при устройстве отопительной системы трубопроводы находятся не только в постройке, но и проходят по улице от недалеко расположенной котельной. В другом случае индивидуальный коллектор подключается к общей городской магистрали, поэтому требуется минимизировать утечку энергии наружного участка. Прокладку труб осуществляют открытым (над землей) или подземным способом.
В обоих вариантах сохранены общие принципы проведения работ, но каждый из них отличается определенными нюансами устройства утепляющей оболочки. Для открытого и подземного случая утепления трубопроводов отопления обязательно проводят подготовку поверхности — очищают и наносят лакокрасочный слой против коррозии.
4.1
Открытое расположение
Провести изоляцию в таких условиях сложно, поскольку защита требуется не только трубам, но и самой оболочке. Главным правилом выбора материала является его низкая гигроскопичность, высокая плотность и толщина. Немаловажно также взаимодействие слоя с ультрафиолетом и стойкость к повреждениям. Открыто располагаются трубы на стальных или бетонных опорах, установленных с размеренным шагом. На земле прокладывают только элементы временной магистрали.
Чтобы на низко расположенном трубопроводе случайно не повреждались части изоляции, их защищают кожухом из толстой оцинковки. В тех магистралях, которые нельзя достать из-за высоты, допускается применение металлического слоя меньшей толщины, так как его основной функцией является предохранение от влажности.
Применение черных материалов нежелательно из-за необходимости их периодического окрашивания лакокрасочными составами. Устраивают противопожарные разрывы из негорючих элементов, если в качестве изоляции используют легковоспламеняющиеся оболочки из пенопласта. Часто для этих целей применяется минеральная вата.
При прокладке труб в неотапливаемых помещениях (например, в коридорах, котельных, на чердаках или верандах) требования к материалу изоляции занижены. Магистрали здесь работают в условиях минимальной влажности, поэтому для них не требуются защитные кожухи.
4.2
Подземный способ
При подземной укладке отопительного коллектора проводится строительство специального канала из кирпича или бетонных элементов, принимающего на себя нагрузку от веса грунта. Помимо этого, стенки сооружения снижают поступление влаги. Канальный способ прокладки надежный, но увеличивает себестоимость работ и в частном домостроении используется редко.
Вторым способом является прокладка без каналов, где трубопровод контактирует непосредственно с грунтом. Основным требованием является заглубление магистрали ниже отметки расчетного промерзания грунта для местности. Утеплитель должен отвечать повышенным требованиям, поскольку существует опасность его разрушения подземными водами.
Блок: 5/6 | Кол-во символов: 2751
Источник: https://oventilyacii.ru/otoplenie/vidy-teploizolyatsii-trub.html
Пенополистирол (пенопласт, ППС)
Выпускается в виде скорлуп, внешне практически не отличающихся от пенополиуретановых – те же размеры, такое же замковое соединение «шип-паз». Но диапазон температуры применения, от -100 до +80 °С, при всей этой внешней схожести делает невозможным или ограниченным его применение для тепловой изолировки трубопровода отопления.
В СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» указано, что в случае двухтрубной системы теплоснабжения максимальная температура подачи может достигать 95°С. Что же касается обратных стояков отопления, то здесь не все так однозначно: считается, что в них температура не превышает 50 °С.
Утепление пенопластом чаще используется для труб холодного водопровода и канализации. Однако он может быть использован поверх других утеплителей с более высокой допустимой температурой применения.
Материалу присущ ряд некоторых недостатков: сильногорюч (даже с добавкой антипиренов), плохо переносит химические воздействия (растворяется в ацетоне), осыпается шариками при длительном воздействии солнечного излучения.
Существуют и другие, не полистирольные пенопласты – формальдегидные, или коротко, фенольные. По сути это совершенно другой материал. Он лишен указанных недостатков, успешно применяется как теплоизоляция трубопроводов, но не настолько широко распространен.
Монтаж
Скорлупы закрепляются на трубе с помощью бандажа либо фольгированным скотчем, допускается приклеивание их к трубе и между собой.
Блок: 6/10 | Кол-во символов: 1462
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Утеплители из стекловолокна
Наиболее доступный материал, выпускаемый на основе кварцевого песка, но морально устаревшая «стекловата» запрещена во многих странах. Это утепление обходится недорого, но со временем данный утеплитель уплотняется, снижается его эффективность. Снаружи обязательна дополнительная обмотка, например, стеклотканью.
Внимание! Микроскопические стекловидные нити опасны для кожи, поэтому при укладке такого утеплителя важно позаботиться о защите кожи рук, лица, всего тела.
Монтаж: Небольшим слоем стекловаты обкладывают трубы отопления и закрывают негигроскопичным материалом. Снаружи обматывают фольгой, рубероидом.
Блок: 4/7 | Кол-во символов: 639
Источник: http://TrubaMaster.ru/uteplenie/montazh-teploizolyacii-truboprovodov.html
Вспененный полиэтилен
Диапазон температур, при которых допускается применение вспененного полиэтилена высокого давления, от -70 до +70 °С. Верхняя граница не сочетается с максимальной температурой трубы отопления, обычно принимаемой при расчетах. Это значит, что как тепловая изоляция трубопроводов материал малопригоден, но может использоваться в роли изолирующего слоя поверх жаростойкого.
Пенополиэтиленовая изоляция нашла практически безальтернативное применение в качестве защиты от промерзания труб водопроводных. Очень часто она используется как пароизоляция и гидроизоляция.
Выпускается материал в виде листов либо в виде гибкой толстостенной трубы. Последняя форма чаще применяется, так как более удобна для утепления водопровода. Стандартная длина – 2 метра. Цвет варьируется от белого до темно-серого. Возможно наличие покрытия из алюминиевой фольги, отражающей ИК излучение. Различия касаются внутренних диаметров (от 15 до 114 мм), толщины стенок (от 6 до 30 мм).
Применение обеспечивает температуру на трубе выше точки росы, а значит препятствует появлению конденсата.
Монтаж
Простой путь с худшими пароизоляционными результатами – разрезать пенистый материал по небольшому углублению вдоль боковой поверхности, раскрыть кромки и одеть на трубу. Затем обмотать по всей длине монтажным скотчем.
Более сложное решение (и далеко не всегда осуществимое) – перекрыть воду, полностью разобрать утепляемые участки водопровода и надеть цельные отрезки. Затем собрать все обратно. Полиэтилен закрепить стяжками. В этом случае уязвимым местом станется только стык отрезков. Его можно склеить либо также замотать скотчем.
Блок: 7/10 | Кол-во символов: 1617
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Стекловата
Тепловая изоляция с применением стекловаты отвечает всем требованиям, предъявляемым к теплоизоляционным материалам. Материал предлагается в виде рулонов, матов, плит разной толщины, размеров и плотности. Стекловата при монтаже несколько неудобна и нуждается в дополнительной изоляции и герметизации, что увеличивает стоимость работ и их длительность.
Блок: 7/10 | Кол-во символов: 362
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Вспененный каучук
Вспененный синтетический каучук с закрытопористой структурой – наиболее универсальный материал для сохранения тепла и холода. Рассчитан на диапазон температур от -200 до +150 °С. Соответствует всем требованиям экологической безопасности.
Применяется как изоляция трубопроводов холодной воды, изоляция труб отопления, часто встречается в холодильных системах и системах вентиляции. Трубы для отопления, проложенные внутри зданий и изолированные каучуком, не требуют установки пароизоляционного слоя.
Внешне похож на вспененный полиэтилен, выпускается также в виде листов и гибких толстостенных труб. Монтаж тоже практически не отличается, за исключением того, что такая тепловая изоляция труб может крепиться на клей.
Блок: 8/10 | Кол-во символов: 731
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Составление сметы для утепления трубопровода
Работы по теплоизоляции трубопроводов невозможны без составления предварительной сметы, где прописана «шаг за шагом» вся последовательность выполняемых работ, на основании которых формируется стоимость работ.
Ознакомиться с правилами составления сметы можно на сайте:
Пример для желающих самостоятельно просчитать объем на 1 м длины трубопроводов:
Блок: 8/10 | Кол-во символов: 395
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Как проводятся работы по изоляции трубопроводов
Тепловая изоляция должна осуществляться, согласно действующим нормам и правилам, что гарантирует эффективное энергосбережение и увеличение продолжительности сроков полезного использования
.
Монтаж теплоизоляции трубопроводов, исходя из статьи, реально производить посредством различных материалов, но с учетом определенных факторов и, прежде всего, от прямого назначения будущей прокладываемой системы.
Например, теплоизоляцию трубопроводов с высокой температурой транспортируемой по нему среды лучше производить с применением цилиндровой изоляции (скорлупой ППУ), дополнительно кашированных фольгированным картоном или фольгой.
Блок: 9/10 | Кол-во символов: 676
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Заключение
Правильно выполненный монтаж тепловой изоляции — залог того, что труба не потеряет тепло, а потребитель не замерзнет. Замерзание же трубопровода холодного водоснабжения неизменно приводит к его разрыву. Вплоть до последнего времени на скрытых и открытых теплотрассах обычными изоляционным материалом была стекловата. Ее недостатки проистекают один из другого. Такое покрытие требует постоянного контроля.
Даже при незначительном повреждении защищающего поверхностного слоя паропроницаемость и гигроскопичность сводят всю экономию на нет. Влага является причиной низкого термического сопротивления и преждевременного разрушения. Значительно улучшить ситуацию помогут современные изоляционные материалы с ячеистой структурой, инертные к воздействию пара и воды: пенополиуретан, вспененный каучук, пенополиэтилен.
Блок: 10/10 | Кол-во символов: 819
Источник: https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html
Краткое устройство теплоизоляции трубопроводов
Предварительный этап:
- полное завершение монтажных работ (слесарных, сварочных);
- зачистка стальными щитками (вручную) либо с помощью пескоструйных машин поверхности и стыков трубопровода, обезжиривание;
- испытание прочности и герметичности сварных швов (визуальный осмотр, проверка давлением, контроль (при необходимости) с помощью спецоборудования));
- нанесение спецсоставов – эпоксидных праймеров (как пример).
Интересно ознакомиться визуально с процессом монтажа:
Блок: 10/10 | Кол-во символов: 513
Источник: https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html
Кол-во блоков: 23 | Общее кол-во символов: 28196
Количество использованных доноров: 6
Информация по каждому донору:
- https://uteplix.com/obyekty/truby/teploizolyatsiya-truboprovodov.html: использовано 6 блоков из 10, кол-во символов 5021 (18%)
- http://TrubaMaster.ru/uteplenie/montazh-teploizolyacii-truboprovodov.html: использовано 2 блоков из 7, кол-во символов 1987 (7%)
- https://teplota.guru/teploizolyatsiya/poetapnaya-izolyatsiya-truboprovodov.html: использовано 6 блоков из 10, кол-во символов 7215 (26%)
- https://zastpoyka.ru/teploizolyaciya-dlya-trub-opisanie-svojstva-vidy-i-cena-teploizolyacii-dlya-trub/: использовано 1 блоков из 3, кол-во символов 2233 (8%)
- https://domidei.ru/articles/osnovnye-pravila-montaga-trubnoi-teploizolyacii: использовано 2 блоков из 2, кол-во символов 4172 (15%)
- https://oventilyacii.ru/otoplenie/vidy-teploizolyatsii-trub.html: использовано 4 блоков из 6, кол-во символов 7568 (27%)
Поделитесь в соц.сетях: |
Оцените статью: Загрузка… |
СП 61.13330.2012
СВОД ПРАВИЛ
ТЕПЛОВАЯ ИЗОЛЯЦИЯ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ
Designing of thermal insulation of equipment and pipe lines
Актуализированная редакция СНиП 41-03-2003
ОКС 91.120.10
Дата введения 2013-01-01
Предисловие
Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании», а правила разработки — постановлением Правительства Российской Федерации от 19 ноября 2008 г. N 858 «О порядке разработки и утверждения сводов правил».
Сведения о своде правил
1 ИСПОЛНИТЕЛЬ — Московский государственный строительный университет (МГСУ) и группа специалистов
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики
5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 61.13330.2010 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»
Информация об изменениях к настоящему своду правил публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минрегион России) в сети Интернет
ВНЕСЕНЫ: опечатка, опубликованная в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 6, 2012 г. и опечатки, размещенные на официальном сайте ФАУ «ФЦС», www.certif.org/fcs/sp_malomob.html (по состоянию на 01.10.2014).
Опечатки внесены изготовителем базы данных
ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 3 декабря 2016 г. N 882/пр c 04.06.2017
Изменение N 1 внесено изготовителем базы данных
Введение
Настоящий свод правил разработан с учетом современных тенденций в проектировании промышленной тепловой изоляции и рекомендаций международных организаций по стандартизации и нормированию.
Нормативный документ содержит требования к теплоизоляционным материалам, изделиям и конструкциям, правила проектирования тепловой изоляции, нормы плотности теплового потока с изолируемых поверхностей оборудования и трубопроводов с положительными и отрицательными температурами при их расположении на открытом воздухе, в помещении, непроходных каналах и при бесканальной прокладке. В документе приведены методы расчета толщины тепловой изоляции оборудования и трубопроводов, расчетные характеристики теплоизоляционных материалов, правила определения объема и толщины уплотняющихся волокнистых теплоизоляционных материалов в зависимости от коэффициента уплотнения.
Актуализация выполнена авторским коллективом в составе: канд. техн. наук Б.М.Шойхет (руководитель работы), д-р техн. наук Б.М.Румянцев (МГСУ), В.Н.Якуничев (СПКБ АО «Фирма «Энергозащита»), В.Н.Крушельницкий (ОАО «Атомэнергопроект»).
В работе принимали участие: А.И.Коротков, И.Б.Новиков (ОАО «ВНИПИэнергопром»), канд. техн. наук В.И.Кашинский (ООО «ПРЕДПРИЯТИЕ «Теплосеть-Сервис»), С.Л.Кац (ОАО «ВНИПИнефть»), Р.Ш.Виноградова (ОАО «Теплоэлектропроект»), Е.А.Никитина (ОАО «Атомэнергопроект»).
1 Область применения
Настоящий свод правил следует соблюдать при проектировании тепловой изоляции наружной поверхности оборудования, трубопроводов, газоходов и воздуховодов, расположенных в зданиях, сооружениях и на открытом воздухе с температурой содержащихся в них веществ от минус 180 до 600 °С, в том числе трубопроводов тепловых сетей при всех способах прокладки и трубопроводов с обогревающими их паровыми и водяными спутниками.
Настоящие нормы не распространяются на проектирование тепловой изоляции оборудования и трубопроводов, содержащих и транспортирующих взрывчатые вещества, изотермических хранилищ сжиженных газов, зданий и помещений для производства и хранения взрывчатых веществ, атомных станций и установок.
(Измененная редакция, Изм. N 1).
2 Нормативные ссылки
Нормативные документы, на которые в тексте настоящего свода правил имеются ссылки, приведены в приложении А.
Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования — на официальном сайте национальных органов Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящим сводом правил следует руководствоваться замененным (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.
3 Термины и определения
В настоящем своде правил применены термины по ГОСТ 31913, а также следующие термины с соответствующими определениями:
(Измененная редакция, Изм. N 1).
3.1 плотность теплоизоляционного материала,
, кг/м
:
Величина, определяемая отношением массы материала ко всему занимаемому им объему, включая поры и пустоты;
3.2 коэффициент теплопроводности, (
), Вт/(м·°С):
Количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице;
3.3 расчетная теплопроводность:
Коэффициент теплопроводности теплоизоляционного материала в эксплуатационных условиях с учетом его температуры, влажности, монтажного уплотнения и наличия швов в теплоизоляционной конструкции;
3.4 паропроницаемость,
, мг/(м·ч·Па):
Способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала;
3.5 температуростойкость:
Способность материала сохранять механические свойства при повышении или понижении температуры. Характеризуется предельными температурами применения, при которых в материале обнаруживаются неупругие деформации (при повышении температуры) или разрушение структуры (при понижении температуры) под сжимающей нагрузкой;
3.6 уплотнение теплоизоляционных материалов:
Монтажная характеристика, определяющая плотность теплоизоляционного материала после его установки в проектное положение в конструкции. Уплотнение материалов характеризуется коэффициентом уплотнения, значение которого определяется отношением объема материала или изделия к его объему в конструкции;
3.7 теплоизоляционная конструкция:
Конструкция, состоящая из одного или нескольких слоев теплоизоляционного материала (изделия), защитно-покровного слоя и элементов крепления. В состав теплоизоляционной конструкции могут входить пароизоляционный, предохранительный и выравнивающий слои;
3.8 многослойная теплоизоляционная конструкция:
Конструкция, состоящая из двух и более слоев различных теплоизоляционных материалов;
3.9 покровный слой:
Элемент конструкции, устанавливаемый по наружной поверхности тепловой изоляции для защиты от механических повреждений и воздействия окружающей среды;
3.10 пароизоляционный слой:
Элемент теплоизоляционной конструкции оборудования и трубопроводов с температурой ниже температуры окружающей среды, предохраняющий теплоизоляционный слой от проникновения в нее паров воды вследствие разности парциальных давлений пара у холодной поверхности и в окружающей среде;
3.11 предохранительный слой:
Элемент теплоизоляционный конструкции, входящий, как правило, в состав теплоизоляционной конструкции для оборудования и трубопроводов с температурой поверхности ниже температуры окружающей среды с целью защиты пароизоляционного слоя от механических повреждений;
3.12 температурные деформации:
Тепловое расширение или сжатие изолируемой поверхности и элементов конструкции под воздействием изменения температурных условий при монтаже и эксплуатации изолируемого объекта;
3.13 выравнивающий слой:
Элемент теплоизоляционной конструкции, выполняемый из упругих рулонных или листовых материалов, устанавливается под мягкий покровный слой (например из лакостеклоткани) для выравнивания формы поверхности;
3.14 Паровые и водяные спутники:
Трубопроводы малого диаметра, предназначенные для обогрева основного трубопровода и расположенные в общей с основным трубопроводом теплоизоляционной конструкции.
(Введен дополнительно, Изм. N 1).
4 Общие положения
4.1 Теплоизоляционная конструкция должна обеспечивать параметры теплохолодоносителя при эксплуатации, нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей.
4.2 Конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям:
-
энергоэффективности — иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчетного срока эксплуатации;
-
эксплуатационной надежности и долговечности — выдерживать без снижения теплозащитных свойств и разрушения эксплуатационные температурные, механические, химические и другие воздействия в течение расчетного срока эксплуатации;
-
безопасности для окружающей среды и обслуживающего персонала при эксплуатации и утилизации.
Материалы, используемые в теплоизоляционных конструкциях, не должны выделять в процессе эксплуатации вредные, пожароопасные и взрывоопасные, неприятно пахнущие вещества, а также болезнетворные бактерии, вирусы и грибки, в количествах, превышающих предельно допустимые концентрации, установленные в санитарных нормах.
4.3 При выборе материалов и изделий, входящих в состав теплоизоляционных конструкций для поверхностей с положительными температурами теплоносителя (20 °С и выше), следует учитывать следующие факторы:
-
месторасположение изолируемого объекта СП 131.13330;
-
температуру изолируемой поверхности;
-
температуру окружающей среды;
-
требования пожарной безопасности;
-
агрессивность окружающей среды или веществ, содержащихся в изолируемых объектах;
-
коррозионное воздействие;
-
материал поверхности изолируемого объекта;
-
допустимые нагрузки на изолируемую поверхность;
-
наличие вибрации и ударных воздействий;
-
требуемую долговечность теплоизоляционной конструкции;
-
санитарно-гигиенические требования;
-
температуру применения теплоизоляционного материала;
-
теплопроводность теплоизоляционного материала;
-
температурные деформации изолируемых поверхностей;
-
конфигурация и размеры изолируемой поверхности;
-
условия монтажа (стесненность, высотность, сезонность и др.);
-
условия демонтажа и утилизации.
Теплоизоляционная конструкция трубопроводов тепловых сетей подземной бесканальной прокладки должна выдерживать без разрушения:
-
воздействие грунтовых вод;
-
нагрузки от массы вышележащего грунта и проходящего транспорта.
При выборе теплоизоляционных материалов и конструкций для поверхностей с температурой теплоносителя 19 °С и ниже и отрицательной температурой дополнительно следует учитывать относительную влажность окружающего воздуха, а также влажность и паропроницаемость теплоизоляционного материала.
(Измененная редакция, Изм. N 1).
4.4 В состав конструкции тепловой изоляции для поверхностей с положительной температурой в качестве обязательных элементов должны входить:
-
теплоизоляционный слой;
-
покровный слой;
-
элементы крепления.
4.5 В состав конструкции тепловой изоляции для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:
-
теплоизоляционный слой;
-
пароизоляционный слой;
-
покровный слой;
-
элементы крепления.
Пароизоляционный слой следует предусматривать также при температуре изолируемой поверхности ниже 12 °С. Устройство пароизоляционного слоя при температуре выше 12 °С следует предусматривать для оборудования и трубопроводов с температурой ниже температуры окружающей среды, если расчетная температура изолируемой поверхности ниже температуры «точки росы» при расчетном давлении и влажности окружающего воздуха.
Необходимость установки пароизоляционного слоя в конструкции тепловой изоляции для поверхностей с переменным температурным режимом (от «положительной» к «отрицательной» и наоборот) определяется расчетом для исключения накопления влаги в теплоизоляционной конструкции.
Антикоррозионные покрытия изолируемой поверхности не входят в состав теплоизоляционных конструкций.
4.6 В зависимости от применяемых конструктивных решений в состав конструкции дополнительно могут входить:
-
выравнивающий слой;
-
предохранительный слой.
Предохранительный слой следует предусматривать при применении металлического покровного слоя для предотвращения повреждения пароизоляционных материалов.
5 Требования к материалам и конструкциям тепловой изоляции
5.1 В конструкциях теплоизоляции оборудования и трубопроводов с температурами содержащихся в них веществ в диапазоне от 20 до 300 °С для всех способов прокладки, кроме бесканальной, следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м и коэффициентом теплопроводности в сухом состоянии не более 0,06 Вт/(м·К) при средней температуре 25 °С. Допускается применение асбестовых шнуров для изоляции трубопроводов условным проходом до 50 мм включительно.
Выбор теплоизоляционного материала для конкретной конструкции осуществляется на основании технических требований, изложенных в техническом задании на проектирование тепловой изоляции.
5.2 В качестве первого теплоизоляционного слоя многослойных конструкций теплоизоляции оборудования и трубопроводов с температурами содержащихся в них веществ в диапазоне от 300 °С и более допускается применять теплоизоляционные материалы и изделия с плотностью не более 350 кг/м и коэффициентом теплопроводности при средней температуре 300 °С не более 0,12 Вт/(м·К).
5.3 В качестве второго и последующих теплоизоляционных слоев конструкций теплоизоляции оборудования и трубопроводов с температурой содержащихся в них веществ 300 °С и более для всех способов прокладки, кроме бесканальной, следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м и коэффициентом теплопроводности при средней температуре 125 °С не более 0,08 Вт/(м·К).
5.4 Для теплоизоляционного слоя трубопроводов с положительной температурой при бесканальной прокладке следует применять материалы с плотностью не более 400 кг/м и теплопроводностью не более 0,07 Вт/(м·К) при температуре материала 25 °С и влажности, указанной в соответствующих государственных стандартах или технических условиях.
5.5 Для теплоизоляционного слоя оборудования и трубопроводов с отрицательными температурами следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м и расчетной теплопроводностью в конструкции не более 0,05 Вт/(м·К) при температуре веществ минус 40 °С и выше и не более 0,04 Вт/(м·К) — при минус 40 °С.
При выборе материала теплоизоляционного слоя поверхности с температурой от 19 до 0 °С следует относить к поверхностям с отрицательными температурами.
5.6 Соответствие материалов, применяемых в качестве теплоизоляционного и покровного слоев в составе теплоизоляционных конструкций оборудования и трубопроводов, требованиям к качеству продукции, санитарно-гигиеническим требованиям и требованиям пожарной безопасности должно быть подтверждено результатами испытаний, выполненных аккредитованными организациями.
5.7 Конструкция тепловой изоляции трубопроводов при бесканальной прокладке должна обладать прочностью на сжатие не менее 0,4 МПа.
При бесканальной прокладке тепловых сетей следует преимущественно применять предварительно изолированные в заводских условиях трубы с учетом допустимой температуры применения теплоизоляционного материала и температурного графика работы тепловых сетей.
Применение засыпной изоляции трубопроводов при подземной прокладке в каналах и бесканально не допускается.
5.8 При бесканальной прокладке предварительно изолированные трубопроводы с изоляцией из пенополиуретана в полиэтиленовой оболочке должны быть снабжены системой оперативного дистанционного контроля влажности изоляции (ОДК).
5.9 Не допускается применять асбестосодержащие теплоизоляционные материалы для конструкций тепловой изоляции оборудования и трубопроводов с отрицательными температурами содержащихся в них веществ и для изоляции трубопроводов подземной прокладки в непроходных каналах.
5.10 При выборе теплоизоляционных материалов и покровных слоев следует учитывать стойкость элементов теплоизоляционной конструкции к химически агрессивным факторам окружающей среды, включая возможное воздействие веществ, содержащихся в изолируемом объекте.
Не допускается применение теплоизоляционных материалов, содержащих органические вещества, для изоляции конструкций оборудования и трубопроводов, содержащих сильные окислители (жидкий кислород).
Для металлических покрытий должна предусматриваться антикоррозионная защита или выбираться материал, не подверженный воздействию агрессивной среды.
5.11 Для оборудования и трубопроводов, подвергающихся ударным воздействиям и вибрации, рекомендуется применять теплоизоляционные изделия на основе базальтового супертонкого или асбестового волокна или другие материалы, вибростойкость которых в условиях эксплуатации подтверждена результатами испытаний, выполненных аккредитованными организациями.
Для объектов, подвергающихся вибрации, при применении штукатурных защитных покрытий следует предусматривать оклейку штукатурного защитного покрытия с последующей окраской.
5.12 При проектировании объектов с повышенными санитарно-гигиеническими требованиями к содержанию пыли в воздухе помещений в конструкциях теплоизоляции не допускается применение материалов, загрязняющих воздух в помещениях.
Рекомендуется применение теплоизоляционных изделий на основе минеральной ваты с диаметром волокна не более 5 мкм, изделий из супертонкого стекловолокна в обкладках со всех сторон из стеклянной или кремнеземной ткани и под герметичным защитным покрытием или других материалов, соответствие которых указанным санитарно-гигиеническим требованиям подтверждено результатами испытаний, выполненных аккредитованными организациями.
5.13 В конструкциях тепловой изоляции, предназначенных для обеспечения заданной температуры на поверхности изоляции, в качестве покровного слоя рекомендуется применять материалы со степенью черноты не ниже 0,9 (с коэффициентом излучения не ниже 5,0 Вт/(м·К).
5.14 Не допускается применение металлического покровного слоя при подземной бесканальной прокладке и прокладке трубопроводов в непроходных каналах.
Покровный слой из тонколистового металла с наружным полимерным покрытием не допускается применять в местах, подверженных прямому воздействию солнечных лучей.
5.15 Покровный слой допускается не предусматривать в теплоизоляционных конструкциях на основе изделий из волокнистых материалов с покрытием (кэшированных) из алюминиевой фольги или стеклоткани (стеклохолста, стеклорогожи), вспененного синтетического каучука и вспененного полиэтилена для изолируемых объектов, расположенных в помещениях, тоннелях, подвалах и чердаках зданий, и при канальной прокладке трубопроводов.
(Измененная редакция, Изм. N 1).
5.16 Число слоев пароизоляционного материала в теплоизоляционных конструкциях для оборудования и трубопроводов с отрицательными температурами содержащихся в них веществ рекомендуется принимать по приложению Б (таблица Б.4).
(Измененная редакция, Изм. N 1).
Таблица 1 (Исключена, Изм. N 1).
5.17 При применении теплоизоляционных материалов из вспененных полимеров с закрытыми порами необходимость применения пароизоляционного слоя должна быть обоснована расчетом. При исключении пароизоляционного слоя следует предусматривать герметизацию стыков изделий материалами, не пропускающими водяные пары.
5.18 Теплоизоляционные конструкции из материалов с группой горючести Г3 и Г4 не допускается предусматривать для оборудования и трубопроводов, расположенных:
-
а) в зданиях, кроме зданий IV степени огнестойкости, одноквартирных жилых домов и охлаждаемых помещений холодильников;
-
б) в наружных технологических установках, кроме отдельно стоящего оборудования;
-
в) на эстакадах и галереях при наличии кабелей и трубопроводов, транспортирующих горючие вещества.
При этом допускается применение горючих материалов группы Г3 или Г4 для:
-
пароизоляционного слоя толщиной не более 2 мм;
-
слоя окраски или пленки толщиной не более 0,4 мм;
-
покровного слоя трубопроводов, расположенных в технических подвальных этажах и подпольях с выходом только наружу в зданиях I и II степеней огнестойкости при устройстве вставок длиной 3 м из негорючих материалов не более чем через 30 м длины трубопровода;
-
теплоизоляционного слоя из заливочного пенополиуретана при покровном слое из оцинкованной стали в наружных технологических установках.
Покровный слой из слабогорючих материалов группы Г1 и Г2, применяемых для наружных технологических установок высотой 6 м и более, должен быть на основе стеклоткани.
5.19 Тепловая изоляция трубопроводов и оборудования должна обеспечивать безусловное выполнение требований безопасности и защиты окружающей среды.
Для трубопроводов надземной прокладки при применении теплоизоляционных конструкций из горючих материалов группы Г3 и Г4, следует предусматривать:
-
вставки длиной 3 м из негорючих материалов не более чем через 100 м длины трубопровода;
-
участки теплоизоляционных конструкций из негорючих материалов на расстоянии не менее 5 м от технологических установок, содержащих горючие газы и жидкости.
При пересечении трубопроводом противопожарной преграды следует предусматривать теплоизоляционные конструкции из негорючих материалов в пределах размера противопожарной преграды.
При применении конструкций теплопроводов в тепловой изоляции из горючих материалов в негорючей оболочке допускается не делать противопожарные вставки.
Требования к пожарной безопасности теплоизоляционных конструкций трубопроводов тепловых сетей определяются по СП 124.13330.
5.20 Для элементов оборудования и трубопроводов, требующих в процессе эксплуатации систематического наблюдения, следует предусматривать сборно-разборные съемные теплоизоляционные конструкции.
Съемные теплоизоляционные конструкции должны применяться для изоляции люков, фланцевых соединений, арматуры и компенсаторов трубопроводов, а также в местах измерений и проверки состояния изолируемых поверхностей.
5.21 Изделия из минеральной ваты (каменной ваты и стекловолокна), применяемые в качестве теплоизоляционного слоя для трубопроводов подземной канальной прокладки, должны быть гидрофобизированы.
Не допускается применение теплоизоляционных материалов, подверженных деструкции при взаимодействии с влагой (асбестосодержащая мастичная изоляция, изделия известково-кремнеземистые, перлитоцементные и совелитовые).
5.22 При проектировании тепловой изоляции следует учитывать возможность коррозионного воздействия теплоизоляционного материала или входящих в его состав химических веществ на металлические поверхности оборудования и трубопроводов в присутствии влаги. В зависимости от материала изолируемой поверхности (сталь углеродистая, сталь легированная, цветные металлы и сплавы) и вида коррозии (окисление, щелочная коррозия, растрескивание под напряжением) в техническом задании на проектирование следует указывать требования по ограничению содержания в теплоизоляционном материале водорастворимых хлоридов, фторидов, свободных щелочей и рН материала.
5.23 Тепловая изоляция трубопроводов с обогревающими их спутниками предусматривает их совместную прокладку в общей теплоизоляционной конструкции. Конструктивные решения тепловой изоляции определяются числом спутников и их расположением относительно трубопровода в конструкции. Применяются системы обогрева, предусматривающие частичный и полный обогрев трубопровода. Для повышения эффективности теплообмена между спутником и трубопроводом применяются конструктивные решения (распорки, подкладки), обеспечивающие максимальное использование теплоотдающей поверхности спутника и тепловоспринимающей поверхности трубопровода в пространстве, ограниченном теплоизоляционной конструкцией. Для снижения тепловых потерь через участок теплоизоляционной конструкции, контактирующий с воздухом в пространстве, ограниченном теплоизоляционной конструкцией, за счет уменьшения радиационной составляющей теплового потока, могут применяться внутренние обкладки (экраны) из алюминиевой фольги толщиной 0,1 мм или фольгированных листовых и рулонных материалов, с учетом допустимой температуры их применения.
(Введен дополнительно, Изм. N 1).
6 Проектирование тепловой изоляции
6.1 Расчет толщины теплоизоляционного слоя по нормированной плотности теплового потока*
________________
* Измененная редакция, Изм. N 1.
6.1.1 Нормы плотности теплового потока через изолированную поверхность объектов, расположенных в Европейском регионе России, следует принимать:
для оборудования и трубопроводов с положительными температурами, расположенных
:
-
на открытом воздухе — по таблицам 2 и 3;
-
в помещении — по таблицам 4 и 5;
для оборудования и трубопроводов с отрицательными температурами, расположенных
:-
на открытом воздухе — по таблице 6;
-
в помещении — по таблице 7;
при прокладке в непроходных каналах
:-
для трубопроводов двухтрубных водяных тепловых сетей — по таблицам 8 и 9;
-
для паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах — по таблице 10;
-
для трубопроводов двухтрубных водяных тепловых сетей при бесканальной прокладке — по таблицам 11-12.
-
-
Нормы плотности теплового потока для толстостенных металлических трубопроводов следует принимать по условному диаметру, соответствующему стандартным трубам того же наружного диаметра.
При проектировании тепловой изоляции для технологических трубопроводов, прокладываемых в каналах и бесканально, нормы плотности теплового потока следует принимать как для трубопроводов, прокладываемых на открытом воздухе.
6.1.2 При расположении изолируемых объектов в других регионах страны следует учитывать изменение стоимости теплоты в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования):
нормы плотности теплового потока для плоской и цилиндрической поверхностей с условным проходом более 1400 мм, , определяются по формуле
, (1)
нормы плотности теплового потока для цилиндрической поверхности с условным проходом 1400 мм и менее, , определяются по формуле
, (2)
где — нормированная поверхностная плотность теплового потока, Вт/м, принимаемая по таблицам 2-7;
— нормированная линейная плотность теплового потока (на 1 м длины цилиндрического объекта), Вт/м, принимаемая по таблицам 2-12;
— коэффициент, учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования), (см. таблицу 13).
Таблица 2 — Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы более 5000
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
||||||||||||
20 |
50 |
100 |
150 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
|
Плотность теплового потока, Вт/м |
|||||||||||||
15 |
4 |
9 |
17 |
25 |
35 |
45 |
56 |
68 |
81 |
94 |
109 |
124 |
140 |
20 |
4 |
10 |
19 |
28 |
39 |
50 |
62 |
75 |
89 |
103 |
119 |
135 |
152 |
25 |
5 |
11 |
20 |
31 |
42 |
54 |
67 |
81 |
95 |
111 |
128 |
145 |
163 |
40 |
5 |
12 |
23 |
35 |
47 |
60 |
75 |
90 |
106 |
123 |
142 |
161 |
181 |
50 |
6 |
14 |
26 |
38 |
51 |
66 |
81 |
98 |
115 |
133 |
153 |
173 |
195 |
65 |
7 |
16 |
29 |
43 |
58 |
74 |
90 |
108 |
127 |
147 |
169 |
191 |
214 |
80 |
8 |
17 |
31 |
46 |
62 |
78 |
96 |
115 |
135 |
156 |
179 |
202 |
226 |
100 |
9 |
19 |
34 |
50 |
67 |
85 |
104 |
124 |
146 |
168 |
192 |
217 |
243 |
125 |
10 |
21 |
38 |
55 |
74 |
93 |
114 |
136 |
159 |
183 |
208 |
235 |
263 |
150 |
11 |
23 |
42 |
61 |
80 |
101 |
132 |
156 |
182 |
209 |
238 |
267 |
298 |
200 |
14 |
28 |
50 |
72 |
95 |
119 |
154 |
182 |
212 |
242 |
274 |
308 |
343 |
250 |
16 |
33 |
57 |
82 |
107 |
133 |
173 |
204 |
236 |
270 |
305 |
342 |
380 |
300 |
18 |
37 |
64 |
91 |
118 |
147 |
191 |
224 |
259 |
296 |
333 |
373 |
414 |
350 |
22 |
45 |
77 |
108 |
140 |
173 |
208 |
244 |
281 |
320 |
361 |
403 |
446 |
400 |
25 |
49 |
84 |
117 |
152 |
187 |
223 |
262 |
301 |
343 |
385 |
430 |
476 |
450 |
27 |
54 |
91 |
127 |
163 |
200 |
239 |
280 |
322 |
365 |
410 |
457 |
505 |
500 |
30 |
58 |
98 |
136 |
175 |
215 |
256 |
299 |
343 |
389 |
436 |
486 |
537 |
600 |
34 |
67 |
112 |
154 |
197 |
241 |
286 |
333 |
382 |
432 |
484 |
537 |
593 |
700 |
38 |
75 |
124 |
170 |
217 |
264 |
313 |
364 |
416 |
470 |
526 |
583 |
642 |
800 |
43 |
83 |
137 |
188 |
238 |
290 |
343 |
397 |
453 |
511 |
571 |
633 |
696 |
900 |
47 |
91 |
150 |
205 |
259 |
315 |
372 |
430 |
490 |
552 |
616 |
681 |
749 |
1000 |
52 |
100 |
163 |
222 |
281 |
340 |
400 |
463 |
527 |
592 |
660 |
729 |
801 |
1400 |
70 |
133 |
215 |
291 |
364 |
439 |
514 |
591 |
670 |
750 |
833 |
918 |
1098 |
Более 1400 и плоские поверхности |
Плотность теплового потока, Вт/м |
||||||||||||
15 |
27 |
41 |
54 |
66 |
77 |
89 |
100 |
110 |
134 |
153 |
174 |
192 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 3 — Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы 5000 и менее
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
||||||||||||
20 |
50 |
100 |
150 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
|
Плотность теплового потока, Вт/м |
|||||||||||||
15 |
4 |
10 |
18 |
28 |
38 |
49 |
61 |
74 |
87 |
102 |
117 |
133 |
150 |
20 |
5 |
11 |
21 |
31 |
42 |
54 |
67 |
81 |
96 |
112 |
128 |
146 |
164 |
25 |
5 |
12 |
23 |
34 |
46 |
59 |
73 |
88 |
104 |
120 |
138 |
157 |
176 |
40 |
6 |
14 |
26 |
39 |
52 |
67 |
82 |
99 |
116 |
135 |
154 |
174 |
196 |
50 |
7 |
16 |
29 |
43 |
57 |
73 |
90 |
107 |
126 |
146 |
167 |
189 |
212 |
65 |
8 |
18 |
33 |
48 |
65 |
82 |
100 |
120 |
141 |
162 |
185 |
209 |
234 |
80 |
9 |
20 |
36 |
52 |
69 |
88 |
107 |
128 |
150 |
172 |
197 |
222 |
248 |
100 |
10 |
22 |
39 |
57 |
76 |
96 |
116 |
139 |
162 |
187 |
212 |
239 |
267 |
125 |
12 |
25 |
44 |
63 |
84 |
113 |
137 |
162 |
189 |
216 |
245 |
276 |
307 |
150 |
13 |
27 |
48 |
70 |
92 |
123 |
149 |
176 |
205 |
235 |
266 |
298 |
332 |
200 |
16 |
34 |
59 |
83 |
109 |
146 |
176 |
207 |
240 |
274 |
310 |
347 |
385 |
250 |
19 |
39 |
67 |
95 |
124 |
166 |
199 |
234 |
270 |
307 |
346 |
387 |
429 |
300 |
22 |
44 |
76 |
106 |
138 |
184 |
220 |
258 |
297 |
338 |
380 |
424 |
469 |
350 |
27 |
54 |
92 |
128 |
164 |
202 |
241 |
282 |
324 |
368 |
413 |
460 |
508 |
400 |
30 |
60 |
100 |
139 |
178 |
219 |
260 |
304 |
349 |
395 |
443 |
493 |
544 |
450 |
33 |
65 |
109 |
150 |
192 |
235 |
280 |
326 |
373 |
422 |
473 |
526 |
580 |
500 |
36 |
71 |
118 |
162 |
207 |
253 |
300 |
349 |
399 |
451 |
505 |
561 |
618 |
600 |
42 |
82 |
135 |
185 |
235 |
285 |
338 |
391 |
447 |
504 |
563 |
624 |
686 |
700 |
47 |
91 |
150 |
204 |
259 |
314 |
371 |
429 |
489 |
551 |
614 |
679 |
746 |
800 |
53 |
102 |
166 |
226 |
286 |
346 |
407 |
470 |
535 |
602 |
670 |
740 |
812 |
900 |
59 |
112 |
183 |
248 |
312 |
377 |
443 |
511 |
581 |
652 |
725 |
800 |
877 |
1000 |
64 |
123 |
199 |
269 |
339 |
408 |
479 |
552 |
626 |
702 |
780 |
860 |
941 |
1400 |
87 |
165 |
264 |
355 |
444 |
532 |
621 |
712 |
804 |
898 |
995 |
1092 |
1193 |
Более 1400 и плоские поверхности |
Плотность теплового потока, Вт/м |
||||||||||||
19 |
35 |
54 |
70 |
85 |
99 |
112 |
125 |
141 |
158 |
174 |
191 |
205 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 4 — Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
|||||||||||
50 |
100 |
150 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
|
Плотность теплового потока, Вт/м |
||||||||||||
15 |
6 |
14 |
23 |
33 |
43 |
54 |
66 |
79 |
93 |
107 |
122 |
138 |
20 |
7 |
16 |
26 |
37 |
48 |
60 |
73 |
87 |
102 |
117 |
134 |
151 |
25 |
8 |
18 |
28 |
40 |
52 |
65 |
79 |
94 |
110 |
126 |
144 |
162 |
40 |
9 |
21 |
32 |
45 |
59 |
73 |
89 |
105 |
122 |
141 |
160 |
180 |
50 |
10 |
23 |
36 |
50 |
64 |
80 |
96 |
114 |
133 |
152 |
173 |
194 |
65 |
12 |
26 |
41 |
56 |
72 |
89 |
107 |
127 |
147 |
169 |
191 |
214 |
80 |
13 |
28 |
44 |
60 |
77 |
95 |
114 |
135 |
156 |
179 |
202 |
227 |
100 |
14 |
31 |
48 |
65 |
84 |
103 |
124 |
146 |
169 |
193 |
218 |
244 |
125 |
16 |
35 |
53 |
72 |
92 |
113 |
136 |
159 |
184 |
210 |
237 |
265 |
150 |
18 |
38 |
58 |
79 |
100 |
123 |
147 |
172 |
199 |
226 |
255 |
285 |
200 |
22 |
46 |
70 |
93 |
118 |
144 |
172 |
200 |
230 |
262 |
294 |
328 |
250 |
26 |
53 |
79 |
106 |
134 |
162 |
193 |
224 |
257 |
291 |
327 |
364 |
300 |
29 |
60 |
88 |
118 |
148 |
179 |
212 |
246 |
281 |
318 |
357 |
396 |
350 |
33 |
66 |
97 |
129 |
161 |
195 |
230 |
267 |
305 |
344 |
385 |
428 |
400 |
36 |
72 |
106 |
139 |
174 |
210 |
247 |
286 |
326 |
368 |
411 |
456 |
450 |
39 |
78 |
114 |
150 |
187 |
225 |
264 |
305 |
348 |
392 |
437 |
484 |
500 |
43 |
84 |
123 |
161 |
200 |
241 |
282 |
326 |
370 |
417 |
465 |
514 |
600 |
49 |
96 |
139 |
181 |
225 |
269 |
315 |
363 |
412 |
462 |
515 |
569 |
700 |
55 |
107 |
153 |
200 |
247 |
295 |
344 |
395 |
448 |
502 |
558 |
616 |
800 |
61 |
118 |
169 |
220 |
270 |
322 |
376 |
431 |
487 |
546 |
606 |
668 |
900 |
67 |
130 |
185 |
239 |
294 |
350 |
407 |
466 |
527 |
589 |
653 |
718 |
1000 |
74 |
141 |
201 |
259 |
318 |
377 |
438 |
501 |
565 |
631 |
699 |
768 |
1400 |
99 |
187 |
263 |
337 |
411 |
485 |
561 |
638 |
716 |
797 |
880 |
964 |
Более 1400 и плоские поверхности |
Плотность теплового потока, Вт/м |
|||||||||||
23 |
41 |
56 |
69 |
82 |
94 |
106 |
118 |
130 |
141 |
153 |
165 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 5 — Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы 5000 и менее
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
|||||||||||
50 |
100 |
150 |
200 |
250 |
300 |
350 |
400 |
450 |
500 |
550 |
600 |
|
Плотность теплового потока, Вт/м |
||||||||||||
15 |
6 |
16 |
25 |
35 |
46 |
58 |
71 |
85 |
99 |
114 |
130 |
147 |
20 |
7 |
18 |
28 |
40 |
52 |
65 |
79 |
93 |
109 |
126 |
143 |
161 |
25 |
8 |
20 |
31 |
43 |
56 |
70 |
85 |
101 |
118 |
136 |
154 |
174 |
40 |
10 |
23 |
36 |
49 |
64 |
80 |
96 |
114 |
132 |
152 |
172 |
194 |
50 |
11 |
25 |
40 |
54 |
70 |
87 |
105 |
124 |
144 |
165 |
187 |
210 |
65 |
13 |
29 |
45 |
62 |
79 |
98 |
118 |
139 |
161 |
184 |
208 |
233 |
80 |
14 |
32 |
49 |
66 |
85 |
105 |
126 |
148 |
171 |
195 |
221 |
247 |
100 |
16 |
35 |
54 |
73 |
93 |
115 |
137 |
161 |
186 |
212 |
239 |
267 |
125 |
18 |
39 |
60 |
81 |
103 |
126 |
151 |
176 |
203 |
231 |
261 |
291 |
150 |
21 |
44 |
66 |
89 |
113 |
138 |
164 |
192 |
221 |
251 |
282 |
315 |
200 |
26 |
53 |
80 |
107 |
134 |
163 |
194 |
225 |
258 |
292 |
328 |
365 |
250 |
30 |
62 |
92 |
122 |
153 |
185 |
218 |
253 |
290 |
327 |
366 |
407 |
300 |
34 |
70 |
103 |
136 |
170 |
205 |
241 |
279 |
319 |
359 |
402 |
446 |
350 |
38 |
77 |
113 |
149 |
186 |
224 |
263 |
304 |
347 |
391 |
436 |
483 |
400 |
42 |
85 |
123 |
162 |
201 |
242 |
284 |
328 |
373 |
419 |
467 |
517 |
450 |
46 |
92 |
134 |
175 |
217 |
260 |
305 |
351 |
398 |
448 |
498 |
551 |
500 |
51 |
100 |
144 |
189 |
233 |
279 |
327 |
375 |
426 |
478 |
532 |
587 |
600 |
58 |
114 |
164 |
214 |
263 |
314 |
367 |
420 |
476 |
533 |
592 |
652 |
700 |
65 |
127 |
182 |
236 |
290 |
345 |
402 |
460 |
520 |
582 |
645 |
710 |
800 |
73 |
141 |
202 |
261 |
320 |
379 |
441 |
504 |
568 |
635 |
703 |
772 |
900 |
81 |
156 |
221 |
285 |
349 |
413 |
479 |
547 |
616 |
687 |
760 |
834 |
1000 |
89 |
170 |
241 |
309 |
378 |
447 |
518 |
590 |
663 |
739 |
816 |
896 |
1400 |
120 |
226 |
318 |
406 |
492 |
580 |
668 |
758 |
850 |
943 |
1038 |
1136 |
Более 1400 и плоские поверхности |
Плотность теплового потока, Вт/м |
|||||||||||
26 |
46 |
63 |
78 |
92 |
105 |
119 |
132 |
145 |
158 |
171 |
190 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 6 — Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении на открытом воздухе
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
||||||||||
0 |
-10 |
-20 |
-40 |
-60 |
-80 |
-100 |
-120 |
-140 |
-160 |
-180 |
|
Плотность теплового потока, Вт/м |
|||||||||||
20 |
3 |
3 |
4 |
6 |
7 |
9 |
10 |
12 |
14 |
16 |
17 |
25 |
3 |
4 |
5 |
6 |
8 |
9 |
11 |
12 |
15 |
17 |
18 |
40 |
4 |
5 |
5 |
7 |
9 |
10 |
12 |
13 |
16 |
18 |
19 |
50 |
5 |
5 |
6 |
8 |
9 |
11 |
13 |
14 |
16 |
19 |
20 |
65 |
6 |
6 |
7 |
9 |
10 |
12 |
14 |
15 |
17 |
20 |
21 |
80 |
6 |
6 |
8 |
10 |
11 |
13 |
15 |
16 |
18 |
21 |
22 |
100 |
7 |
7 |
9 |
11 |
13 |
14 |
17 |
18 |
20 |
22 |
23 |
125 |
8 |
8 |
9 |
12 |
14 |
16 |
18 |
20 |
21 |
23 |
25 |
150 |
8 |
9 |
10 |
13 |
16 |
17 |
20 |
21 |
23 |
25 |
27 |
200 |
10 |
10 |
12 |
16 |
18 |
20 |
23 |
25 |
27 |
29 |
31 |
250 |
11 |
12 |
14 |
18 |
20 |
23 |
26 |
27 |
30 |
33 |
35 |
300 |
12 |
13 |
16 |
20 |
23 |
25 |
28 |
30 |
34 |
36 |
39 |
350 |
14 |
15 |
18 |
22 |
24 |
27 |
30 |
33 |
36 |
38 |
41 |
400 |
16 |
16 |
20 |
23 |
26 |
29 |
32 |
34 |
38 |
40 |
43 |
450 |
17 |
18 |
21 |
26 |
28 |
31 |
34 |
37 |
39 |
42 |
45 |
500 |
19 |
21 |
23 |
27 |
30 |
33 |
36 |
38 |
41 |
44 |
46 |
Более 500 |
Плотность теплового потока, Вт/м |
||||||||||
11 |
12 |
12 |
13 |
14 |
15 |
15 |
16 |
17 |
18 |
19 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 7 — Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении в помещении
Условный проход трубопровода, мм |
Температура теплоносителя, °С |
||||||||||
0 |
-10 |
-20 |
-40 |
-60 |
-80 |
-100 |
-120 |
-140 |
-160 |
-180 |
|
Плотность теплового потока, Вт/м |
|||||||||||
20 |
5 |
6 |
6 |
7 |
8 |
9 |
10 |
10 |
11 |
13 |
14 |
25 |
6 |
7 |
7 |
8 |
9 |
10 |
11 |
14 |
16 |
17 |
20 |
40 |
7 |
7 |
8 |
9 |
11 |
12 |
13 |
16 |
17 |
19 |
21 |
50 |
7 |
8 |
9 |
10 |
12 |
13 |
15 |
17 |
19 |
20 |
22 |
65 |
8 |
9 |
9 |
11 |
13 |
14 |
16 |
18 |
20 |
21 |
23 |
80 |
9 |
9 |
10 |
12 |
13 |
15 |
17 |
19 |
20 |
22 |
24 |
100 |
10 |
10 |
11 |
13 |
14 |
16 |
18 |
20 |
21 |
23 |
25 |
125 |
11 |
11 |
12 |
14 |
16 |
18 |
20 |
21 |
23 |
26 |
27 |
150 |
12 |
13 |
13 |
16 |
17 |
20 |
21 |
23 |
25 |
27 |
30 |
200 |
15 |
16 |
16 |
19 |
21 |
23 |
25 |
27 |
30 |
31 |
34 |
250 |
16 |
17 |
19 |
20 |
23 |
26 |
27 |
30 |
33 |
36 |
38 |
300 |
19 |
20 |
21 |
23 |
26 |
29 |
31 |
34 |
37 |
39 |
41 |
350 |
21 |
22 |
23 |
26 |
29 |
31 |
34 |
36 |
38 |
41 |
44 |
400 |
23 |
24 |
26 |
28 |
30 |
34 |
36 |
38 |
41 |
44 |
46 |
450 |
25 |
27 |
28 |
30 |
33 |
35 |
37 |
40 |
42 |
45 |
48 |
500 |
28 |
29 |
30 |
33 |
35 |
37 |
40 |
42 |
45 |
47 |
49 |
Более 500 |
Плотность теплового потока, Вт/м |
||||||||||
15 |
16 |
17 |
18 |
19 |
19 |
20 |
21 |
22 |
22 |
23 |
|
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных сетей при подземной канальной прокладке
Таблица 8 — Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год более 5000 ч
Условный проход трубопровода, мм |
Среднегодовая температура теплоносителя (подающий/обратный), °С |
||
65/50 |
90/50 |
110/50 |
|
Суммарная линейная плотность теплового потока, Вт/м |
|||
25 |
19 |
24 |
28 |
32 |
21 |
26 |
30 |
40 |
22 |
28 |
32 |
50 |
25 |
30 |
35 |
65 |
29 |
35 |
40 |
80 |
31 |
37 |
43 |
100 |
34 |
40 |
46 |
125 |
39 |
46 |
52 |
150 |
42 |
50 |
57 |
200 |
52 |
61 |
70 |
250 |
60 |
71 |
80 |
300 |
67 |
79 |
90 |
350 |
75 |
88 |
99 |
400 |
81 |
96 |
108 |
450 |
89 |
104 |
117 |
500 |
96 |
113 |
127 |
600 |
111 |
129 |
145 |
700 |
123 |
144 |
160 |
800 |
137 |
160 |
177 |
900 |
151 |
176 |
197 |
1000 |
166 |
192 |
212 |
1200 |
195 |
225 |
250 |
1400 |
221 |
256 |
283 |
Примечания. 1 Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °С соответствуют температурным графикам 95-70, 150-70 и 180-70 °С. 2 Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Таблица 9 — Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год 5000 ч и менее
Условный проход трубопровода, мм |
Среднегодовая температура теплоносителя (подающий/обратный), °С |
|||
65/50 |
90/50 |
110/50 |
||
Суммарная линейная плотность теплового потока, Вт/м |
||||
25 |
21 |
26 |
31 |
|
32 |
24 |
29 |
33 |
|
40 |
25 |
31 |
35 |
|
50 |
29 |
34 |
39 |
|
65 |
32 |
39 |
45 |
|
80 |
35 |
42 |
48 |
|
100 |
39 |
47 |
53 |
|
125 |
44 |
53 |
60 |
|
150 |
49 |
59 |
66 |
|
200 |
60 |
71 |
81 |
|
250 |
71 |
83 |
94 |
|
300 |
81 |
94 |
105 |
|
350 |
89 |
105 |
118 |
|
400 |
98 |
115 |
128 |
|
450 |
107 |
125 |
140 |
|
500 |
118 |
137 |
152 |
|
600 |
134 |
156 |
174 |
|
700 |
151 |
175 |
194 |
|
800 |
168 |
195 |
216 |
|
900 |
186 |
216 |
239 |
|
1000 |
203 |
234 |
261 |
|
1200 |
239 |
277 |
305 |
|
1400 |
273 |
316 |
349 |
|
Примечание — см. примечания к таблице 8. |
Таблица 10 — Нормы плотности теплового потока через поверхность изоляции паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах
Условный проход трубопроводов, мм |
Паро- |
Конденсато- |
Паро- |
Конденсато- |
Паро- |
Конденсато- |
Паро- |
Конденсато- |
Паро- |
Конденсато- |
Паро- |
Конденсато- |
|
Расчетная температура теплоносителя, °С |
|||||||||||||
115 |
100 |
150 |
100 |
200 |
100 |
250 |
100 |
300 |
100 |
350 |
100 |
||
25 |
25 |
22 |
18 |
30 |
18 |
41 |
18 |
51 |
18 |
64 |
18 |
79 |
18 |
32 |
25 |
23 |
18 |
32 |
18 |
43 |
18 |
54 |
18 |
69 |
18 |
83 |
18 |
40 |
25 |
25 |
18 |
33 |
18 |
45 |
18 |
58 |
18 |
73 |
18 |
88 |
18 |
50 |
25 |
27 |
18 |
36 |
18 |
52 |
18 |
64 |
18 |
79 |
18 |
95 |
18 |
65 |
32 |
31 |
21 |
43 |
21 |
58 |
21 |
71 |
21 |
88 |
20 |
103 |
20 |
80 |
40 |
35 |
23 |
46 |
23 |
62 |
23 |
81 |
22 |
98 |
22 |
117 |
21 |
100 |
40 |
38 |
23 |
49 |
23 |
66 |
23 |
81 |
22 |
98 |
22 |
117 |
21 |
125 |
50 |
42 |
24 |
53 |
24 |
72 |
24 |
88 |
23 |
107 |
23 |
126 |
23 |
150 |
65 |
45 |
27 |
58 |
27 |
78 |
27 |
94 |
26 |
115 |
26 |
142 |
26 |
200 |
80 |
52 |
27 |
68 |
27 |
89 |
27 |
108 |
28 |
131 |
28 |
153 |
28 |
250 |
100 |
58 |
31 |
75 |
31 |
99 |
31 |
119 |
31 |
147 |
31 |
172 |
31 |
300 |
125 |
64 |
33 |
83 |
33 |
110 |
33 |
133 |
33 |
159 |
33 |
186 |
33 |
350 |
150 |
70 |
38 |
90 |
38 |
118 |
38 |
143 |
37 |
171 |
37 |
200 |
34 |
400 |
180 |
75 |
42 |
96 |
42 |
127 |
42 |
153 |
41 |
183 |
41 |
213 |
41 |
450 |
200 |
81 |
44 |
103 |
44 |
134 |
44 |
162 |
44 |
193 |
43 |
224 |
43 |
500 |
250 |
86 |
50 |
110 |
50 |
143 |
50 |
173 |
49 |
207 |
49 |
239 |
48 |
600 |
300 |
97 |
55 |
123 |
55 |
159 |
55 |
190 |
54 |
227 |
54 |
261 |
53 |
700 |
300 |
105 |
55 |
133 |
55 |
172 |
55 |
203 |
54 |
243 |
53 |
280 |
53 |
800 |
300 |
114 |
55 |
143 |
55 |
185 |
55 |
220 |
54 |
— |
— |
— |
— |
Примечание — Промежуточные значения норм плотности теплового потока следует определять интерполяцией. |
Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных сетей при подземной бесканальной прокладке
Таблица 11 — Нормы плотности теплового потока для трубопроводов при подземной бесканальной прокладке и продолжительности работы в год более 5000 ч
Условный проход трубопровода, мм |
Среднегодовая температура теплоносителя (подающий/обратный), °С |
||
65/50 |
90/50 |
110/50 |
|
Суммарная линейная плотность теплового потока, Вт/м |
|||
25 |
27 |
32 |
36 |
32 |
29 |
35 |
39 |
40 |
31 |
37 |
42 |
50 |
35 |
41 |
47 |
65 |
41 |
49 |
54 |
80 |
45 |
52 |
59 |
100 |
49 |
58 |
66 |
125 |
56 |
66 |
73 |
150 |
63 |
73 |
82 |
200 |
77 |
93 |
100 |
250 |
92 |
106 |
117 |
300 |
105 |
121 |
133 |
350 |
118 |
135 |
148 |
400 |
130 |
148 |
163 |
450 |
142 |
162 |
177 |
500 |
156 |
176 |
194 |
600 |
179 |
205 |
223 |
700 |
201 |
229 |
249 |
800 |
226 |
257 |
279 |
900 |
250 |
284 |
308 |
1000 |
275 |
312 |
338 |
1200 |
326 |
368 |
398 |
1400 |
376 |
425 |
461 |
Примечание — см. примечания к таблице 8. |
Таблица 12 — Нормы плотности теплового потока для трубопроводов при подземной бесканальной прокладке и продолжительности работы в год 5000 ч и менее
Условный проход трубопровода, мм |
Среднегодовая температура теплоносителя (подающий/обратный), °С |
||
65/50 |
90/50 |
110/50 |
|
Суммарная линейная плотность теплового потока, Вт/м |
|||
25 |
30 |
35 |
40 |
32 |
32 |
38 |
43 |
40 |
35 |
41 |
47 |
50 |
40 |
47 |
53 |
65 |
46 |
55 |
60 |
80 |
51 |
60 |
66 |
100 |
57 |
67 |
74 |
125 |
65 |
76 |
84 |
150 |
74 |
86 |
94 |
200 |
93 |
107 |
117 |
250 |
110 |
125 |
138 |
300 |
126 |
144 |
157 |
350 |
140 |
162 |
177 |
400 |
156 |
177 |
194 |
450 |
172 |
196 |
213 |
500 |
189 |
214 |
232 |
600 |
219 |
249 |
269 |
700 |
247 |
290 |
302 |
800 |
278 |
312 |
341 |
900 |
310 |
349 |
380 |
1000 |
341 |
391 |
414 |
1200 |
401 |
454 |
491 |
1400 |
467 |
523 |
567 |
Примечание — см. примечания к таблице 8. |
Таблица 13
Район строительства |
Коэффициент |
|||
Способ прокладки трубопроводов и месторасположение оборудования |
||||
на открытом воздухе |
в помещении, тоннеле |
в непроходном канале |
бесканальный |
|
Европейская часть России |
1,0 |
1,0 |
1,0 |
1,0 |
Урал |
0,98 |
0,98 |
0,95 |
0,94 |
Западная Сибирь |
0,98 |
0,98 |
0,95 |
0,94 |
Восточная Сибирь |
0,98 |
0,98 |
0,95 |
0,94 |
Дальний Восток |
0,96 |
0,96 |
0,92 |
0,9 |
Районы Крайнего Севера и приравненные к ним местности |
0,96 |
0,96 |
0,92 |
0,9 |
6.1.3 Расчетные характеристики теплоизоляционных материалов и изделий, применяемых для изоляции оборудования и трубопроводов надземной и подземной прокладок следует принимать с учетом плотности в конструкции, влажности в условиях эксплуатации, швов и влияния мостиков холода элементов крепления.
Коэффициент теплопроводности уплотняющихся материалов при оптимальной плотности в конструкции следует принимать по данным сертификационных испытаний или по данным, приведенным в справочном приложении Б.
6.1.4 При бесканальной прокладке трубопроводов теплопроводность основного слоя теплоизоляционной конструкции, , определяется по формуле
, (3)
где — теплопроводность сухого материала основного слоя, Вт/(м·К);
— коэффициент, учитывающий увеличение теплопроводности от увлажнения, принимаемый в зависимости от вида теплоизоляционного материала и типа грунта по таблице 14.
Таблица 14
Материал теплоизоляционного слоя |
Коэффициент увлажнения |
||
Тип грунта по ГОСТ 25100 |
|||
маловлажный |
влажный |
насыщенный водой |
|
Пенополиуретан |
1,0 |
1,0 |
1,0 |
Армопенобетон |
1,05 |
1,05 |
1,1 |
Пенополимерминерал |
1,05 |
1,05 |
1,1 |
6.1.5 За расчетную температуру окружающей среды при расчетах по нормированной плотности теплового потока следует принимать:
-
а) для изолируемых поверхностей, расположенных на открытом воздухе:
-
для технологического оборудования и трубопроводов — среднюю за год;
-
для трубопроводов тепловых сетей при круглогодичной работе — среднюю за год;
-
для трубопроводов тепловых сетей, работающих только в отопительный период, — среднюю за период со среднесуточной температурой наружного воздуха 8 °С и ниже;
-
-
б) для изолируемых поверхностей, расположенных в помещении — 20 °С;
-
в) для трубопроводов, расположенных в тоннелях — 40 °С;
-
г) для подземной прокладки в каналах или при бесканальной прокладке трубопроводов — среднюю за год температуру грунта на глубине заложения оси трубопровода. При величине заглубления верхней части перекрытия канала (при прокладке в каналах) или верха теплоизоляционной конструкции трубопровода (при бесканальной прокладке) 0,7 м и менее за расчетную температуру окружающей среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.
6.1.6 Температуру теплоносителя технологического оборудования и трубопроводов при расчетах по нормированной плотности теплового потока следует принимать в соответствии с заданием на проектирование.
Для трубопроводов тепловых сетей за расчетную температуру теплоносителя принимают:
-
а) для водяных тепловых сетей:
-
для подающего трубопровода при постоянной температуре сетевой воды и количественном регулировании — максимальную температуру теплоносителя;
-
для подающего трубопровода при переменной температуре сетевой воды и качественном регулировании — в соответствии с таблицей 15;
-
для обратных трубопроводов водяных тепловых сетей 50 °С;
-
-
б) для паровых сетей — максимальную температуру пара среднюю по длине рассматриваемого участка паропровода;
-
в) для конденсатных сетей и сетей горячего водоснабжения — максимальную температуру конденсата или горячей воды.
Таблица 15
Температурные режимы водяных тепловых сетей, °С |
95-70 |
150-70 |
180-70 |
Расчетная температура теплоносителя , °С |
65 |
90 |
110 |
6.1.7 При определении температуры грунта в температурном поле подземного трубопровода тепловых сетей температуру теплоносителя следует принимать:
-
для водяных тепловых сетей — по температурному графику регулирования при среднемесячной температуре наружного воздуха расчетного месяца;
-
для паровых сетей — максимальную температуру пара в рассматриваемом месте паропровода (с учетом падения температуры пара по длине трубопровода);
-
для конденсатных сетей и сетей горячего водоснабжения — максимальную температуру конденсата или воды.
6.2 Определение толщины изоляции по заданной величине теплового потока
При расчете толщины тепловой изоляции по заданной величине теплового потока расчетные температуры теплоносителя и окружающего воздуха принимают в соответствии с пунктами 6.1.5 и 6.1.6.
(Измененная редакция, Изм. N 1).
6.3 Определение толщины тепловой изоляции по технологическим требованиям*
________________
* Измененная редакция, Изм. N 1.
При расчете толщины тепловой изоляции оборудования и трубопроводов с положительными температурами, расположенных на открытом воздухе, в качестве расчетной температуры окружающего воздуха принимается средняя температура наиболее холодной пятидневки с обеспеченностью 0,92;
При расчете толщины тепловой изоляции оборудования и трубопроводов с отрицательными температурами, расположенных на открытом воздухе, в качестве расчетной температуры окружающего воздуха принимается средняя максимальная температура наиболее жаркого месяца.
Для оборудования и трубопроводов, расположенных в помещении, расчетная температура окружающего воздуха принимается в соответствии с заданием на проектирование, а при отсутствии указаний о температуре окружающего воздуха, принимается равной 20°С.
Расчетная температура теплоносителя принимается в соответствии с заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.4 Определение толщины тепловой изоляции по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами (паропроводами)
При расчете толщины тепловой изоляции по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами, расчетную температуру окружающей среды следует принимать для трубопроводов, расположенных:
-
на открытом воздухе и в помещении — в соответствии с 6.3;
-
в тоннелях — 40°С;
-
в каналах или при бесканальной прокладке трубопроводов — минимальную среднемесячную температуру грунта на глубине заложения оси трубопровода.
Расчетную температуру теплоносителя принимают в соответствии с заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.5 Определение толщины тепловой изоляции по заданному количеству конденсата в паропроводах
При расчете толщины тепловой изоляции паропроводов перегретого и насыщенного пара расчетную температуру окружающего воздуха следует принимать в соответствии с 6.3.
Расчетные параметры пара принимают в соответствии с заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.6 Определение толщины тепловой изоляции по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания или увеличения вязкости
При расчете толщины тепловой изоляции по заданному времени приостановки движения жидкости в трубопроводах в целях предотвращения его замерзания или увеличения вязкости расчетные параметры окружающего воздуха и теплоносителя следует принимать в соответствии с 6.3 и заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.7 Расчет толщины тепловой изоляции по заданной температуре на поверхности изоляции*
________________
* Измененная редакция, Изм. N 1.
6.7.1 Температуру на поверхности тепловой изоляции следует принимать не более, °С:
-
а) для изолируемых поверхностей, расположенных в рабочей или обслуживаемой зонах помещений и содержащих вещества с температурой:
выше 500 °С
55
от 150 до 500 °С
45
150 °С и ниже
40
вспышки паров ниже 45 °С
35
-
б) для изолируемых поверхностей, расположенных на открытом воздухе в рабочей или обслуживаемой зоне:
при металлическом покровном слое
55
для других видов покровного слоя
60.
Температура на поверхности тепловой изоляции трубопроводов, расположенных за пределами рабочей или обслуживаемой зоны, не должна превышать температурных пределов применения материалов покровного слоя, но не выше 75 °С.
6.7.2 Расчетную температуру окружающего воздуха следует принимать для поверхностей, расположенных:
-
на открытом воздухе — среднюю максимальную наиболее жаркого месяца;
-
в помещении — в соответствии с 6.3.
6.7.3 При необходимости одновременного выполнения требований 6.1-6.5 и 6.7 принимается большее значение расчетной толщины изоляции.
6.8 Расчет толщины тепловой изоляции с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха
Данный расчет следует выполнять только для изолируемых поверхностей, расположенных в помещении.
Расчетная температура и относительная влажность воздуха принимаются в соответствии с заданием на проектирование.
Для изолируемых поверхностей с отрицательными температурами, расположенных в помещении, толщина теплоизоляционного слоя, определенная по условиям 6.1, 6.2, должна быть проверена по 6.8. В результате сравнения принимается большее значение толщины слоя.
(Измененная редакция, Изм. N 1).
6.9 При расчете толщины тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях газоходов, транспортирующих газы, содержащие водяные пары или водяные пары и газы, которые при растворении в сконденсировавшихся водяных парах могут привести к образованию агрессивных продуктов, расчетную температуру окружающей среды следует принимать в соответствии с 6.3.
Расчетные параметры газов принимают в соответствии с заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.10 При расчете тепловой изоляции трубопроводов с обогревающими их паровыми или водяными спутниками расчетную температуру окружающего воздуха следует принимать:
-
на открытом воздухе — среднюю наиболее холодной пятидневки или в соответствии с заданием на проектирование;
-
в помещении — в соответствии с заданием на проектирование, а при отсутствии указаний о температуре окружающего воздуха — 20°С;
-
в тоннелях — 40°С;
Расчетную температуру теплоносителя в трубопроводе и обогревающем его спутнике принимают в соответствии с заданием на проектирование.
(Измененная редакция, Изм. N 1).
6.11 Теплоизоляционную конструкцию с теплоизоляционным слоем из однородного материала, установленного в несколько слоев, при расчетах рассматривают как однослойную.
Расчет толщины теплоизоляционного слоя конструкции, состоящей из двух и более слоев разнородных материалов, следует проводить исходя из того, что межслойная температура не превышает максимальную температуру применения теплоизоляционного материала последующих слоев. Толщину каждого слоя рассчитывают отдельно.
6.12 Расчетную толщину теплоизоляционного слоя в конструкциях тепловой изоляции на основе волокнистых материалов и изделий (матов, плит, холстов) следует округлять до значений кратных 10 мм.
В конструкциях на основе минераловатных цилиндров, жестких ячеистых материалов, материалов из вспененного синтетического каучука, полиэтилена и пенопластов следует принимать ближайшую к расчетной толщину изделий по нормативным документам на соответствующие материалы.
Если расчетная толщина теплоизоляционного слоя не совпадает с номенклатурной толщиной выбранного материала, следует принимать по действующей номенклатуре ближайшую более высокую толщину теплоизоляционного материала.
Допускается принимать ближайшую более низкую толщину теплоизоляционного слоя в случаях расчета по температуре на поверхности изоляции и нормам плотности теплового потока, если разница между расчетной и номенклатурной толщиной не превышает 3 мм.
6.13 Минимальную толщину теплоизоляционного слоя следует принимать:
-
при изоляции цилиндрами из волокнистых материалов — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями;
-
при изоляции тканями, полотном стекловолокнистым, шнурами — 20 мм;
-
при изоляции изделиями из волокнистых уплотняющихся материалов — 20 мм;
-
при изоляции жесткими материалами, изделиями из вспененных полимеров — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями.
6.14 Предельная толщина теплоизоляционного слоя в конструкциях тепловой изоляции трубопроводов приведена в приложении Г.
Если расчетная толщина больше, чем может обеспечить в соответствии с приложением Г выбранный теплоизоляционный материал, следует применить более эффективный теплоизоляционный материал.
Применение конструкций с большей толщиной теплоизоляционного слоя требует технического обоснования.
6.15 Толщину теплоизоляционного слоя в конструкциях тепловой изоляции приварной, муфтовой и несъемной фланцевой арматуры следует принимать равной толщине изоляции трубопровода.
Толщину теплоизоляционного слоя в съемных теплоизоляционных конструкциях фланцевых соединений и фланцевой арматуры с положительной и отрицательной температурой транспортируемых веществ следует принимать равной толщине изоляции трубопровода.
6.16 Для поверхностей с температурой выше 300 °С и ниже минус 60 °С не допускается применение однослойных конструкций. При многослойной конструкции последующие слои должны перекрывать швы предыдущего.
6.17 Заказные толщину и объем теплоизоляционных изделий из уплотняющихся материалов следует определять по рекомендуемому приложению Д.
6.18 Толщину металлических и композиционных материалов, применяемых в качестве покровного слоя, в зависимости от наружного диаметра трубопровода или конфигурации теплоизоляционной конструкции следует принимать по приложению Б (таблицы Б.2 и Б.3).
(Измененная редакция, Изм. N 1).
Таблица 16 (Исключена, Изм. N 1).
6.19 В качестве покровного слоя теплоизоляционных конструкций диаметром изоляции более 1600 мм и плоских, расположенных в помещении с неагрессивными и слабоагрессивными средами, допускается применять металлические листы и ленты толщиной 0,7-0,8 мм, а для трубопроводов диаметром изоляции более 600 до 1600 мм — 0,6 мм.
6.20 Листы и ленты из алюминия и алюминиевых сплавов толщиной 0,25-0,3 мм рекомендуется применять гофрированными.
6.21 Штукатурный покровный слой теплоизолированной поверхности, расположенной в помещении, должен быть оклеен тканью. Толщину штукатурного покрытия при укладке по жестким или волокнистым материалам в зависимости от диаметра изолируемого объекта рекомендуется принимать по таблице 17.
Таблица 17
Вид изоляционного материала (основание) |
Толщина штукатурного покрытия, мм |
||
Вид изолируемого объекта |
|||
трубопроводы наружным диаметром, мм |
оборудование |
||
до 133 вкл. |
159 и более |
||
Жесткие изделия |
10 |
15 |
20 |
Волокнистые изделия |
15 |
15-20 |
20-25 |
6.22 Для теплоизоляционных конструкций, подвергающихся воздействию агрессивных сред, следует предусматривать защиту металлических покрытий от коррозии.
При использовании в качестве покровного слоя стали тонколистовой оцинкованной толщина цинкового покрытия выбирается с учетом степени агрессивного воздействия среды и предполагаемого срока службы покровного слоя, но не менее 20 мкм.
При применении в качестве покровного слоя листов и лент из алюминия и алюминиевых сплавов и теплоизоляционного слоя в стальной неокрашенной сетке или при устройстве каркаса следует предусматривать установку под покровный слой прокладки из рулонного материала или окраску покровного слоя изнутри битумным лаком.
6.23 Под покровный слой из неметаллических материалов в помещениях хранения и переработки пищевых продуктов следует предусматривать установку сетки стальной из проволоки диаметром не менее 1 мм с ячейками размером не более 12×12 мм.
6.24 Конструкция тепловой изоляции должна исключать ее деформацию и сползание теплоизоляционного слоя в процессе эксплуатации. В составе теплоизоляционных конструкций оборудования и трубопроводов следует предусматривать опорные элементы и разгружающие устройства, обеспечивающие механическую прочность и эксплуатационную надежность конструкций.
На вертикальных участках трубопроводов и оборудования опорные конструкции следует предусматривать через каждые 3-4 м по высоте.
6.25 В конструкциях тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ не следует применять металлические крепежные детали, проходящие через всю толщину теплоизоляционного слоя. Крепежные детали или их части следует предусматривать из материалов с теплопроводностью не более 0,23 Вт/(м·°С).
Деревянные крепежные детали должны быть обработаны антипиреном и антисептическим составом.
Элементы крепления, изготовленные из углеродистой стали, должны иметь антикоррозийное покрытие.
6.26 Размещение крепежных деталей на изолируемых поверхностях следует принимать в соответствии с ГОСТ 17314.
6.27 Детали, предусматриваемые для крепления теплоизоляционной конструкции на поверхности с отрицательными температурами, должны иметь антикоррозионное покрытие или изготавливаться из коррозионно-стойких материалов.
Крепежные детали, соприкасающиеся с изолируемой поверхностью, следует предусматривать:
-
для поверхностей с температурой от минус 40 до 400 °С — из углеродистой стали;
-
для поверхностей с температурой выше 400 и ниже минус 40 °С — из того же материала, что и изолируемая поверхность.
Элементы крепления теплоизоляционного и покровного слоев теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха ниже минус 40 °С, следует применять из легированной стали или алюминия.
6.28 Конструкция покровного слоя тепловой изоляции должна допускать возможность компенсации температурных деформаций изолируемого объекта и теплоизоляционной конструкции.
Температурные швы в защитных покрытиях горизонтальных трубопроводов следует предусматривать у компенсаторов, опор и поворотов, а на вертикальных трубопроводах — в местах установки опорных конструкций.
При изоляции жесткими формованными изделиями следует предусматривать вставки из волокнистых материалов в местах устройства температурных швов.
6.29 Выбор материала для покровного слоя теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха минус 40 °С и ниже, следует производить с учетом температурных пределов применения материалов по действующим нормативным документам.
6.30. Конструкция крепления покровного слоя тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ должна исключать возможность повреждения пароизоляционного слоя в процессе эксплуатации.
6.31 Для оборудования и трубопроводов с отрицательными температурами при применении пароизоляционного слоя из рулонных материалов без сплошной наклейки следует предусматривать герметизацию швов пароизоляционного слоя; при температуре изолируемой поверхности ниже минус 60 °С следует также предусматривать герметизацию швов покровного слоя герметиками или пленочными клеящимися материалами.
6.32 Для бесканальной прокладки трубопроводов тепловых сетей в сухих грунтах возможно применение изоляции из штучных формованных изделий (скорлупы, сегменты) из пенополиуретана или полимербетона с водонепроницаемым покровным слоем, при этом теплоизоляционные изделия следует укладывать на водостойких и температуростойких мастиках или клеях.
6.33 При расчете тепловой изоляции трубопроводов со спутниками расчетную температуру окружающей среды следует принимать:
-
на открытом воздухе — среднюю наиболее холодной пятидневки или в соответствии с заданием на проектирование;
-
в помещении — в соответствии с заданием на проектирование, а при отсутствии данных о температуре окружающего воздуха — 20°С;
-
в тоннелях — 40°С;
Расчетную температуру теплоносителя в трубопроводе и обогревающем его спутнике принимают в соответствии с заданием на проектирование тепловой изоляции.
(Введен дополнительно, Изм. N 1).
Приложение А
(обязательное)
Перечень нормативных документов, на которые имеются ссылки в тексте
ГОСТ 12.1.004-91 Система стандартов безопасности труда. Пожарная безопасность. Общие требования
ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний
ГОСТ 17314-81 Устройства для крепления тепловой изоляции стальных сосудов и аппаратов. Конструкция и размеры. Технические требования
ГОСТ 25100-2011 Грунты. Классификация
ГОСТ 25898-2012 Материалы и изделия строительные. Методы определения паропроницаемости и сопротивления паропроницанию
ГОСТ 30244-94 Материалы строительные. Методы испытаний на горючесть
ГОСТ 31913-2011 Материалы и изделия теплоизоляционные. Термины и определения
ГОСТ 32025-2012 (EN ISO 8497:1996) Тепловая изоляция. Метод определения характеристик теплопереноса в цилиндрах заводского изготовления при стационарном тепловом режиме
СП 124.13330.2012 «СНиП 41-02-2003 Тепловые сети»
СП 131.13330.2012 «СНиП 23-01-99* Строительная климатология» (с изменением N 2)
Приложение А (Измененная редакция, Изм. N 1).
Приложение Б
(справочное)
Технические характеристики теплоизоляционных, защитно-покровных и пароизоляционных материалов и изделий*
________________
* Измененная редакция, Изм. N 1.
Таблица Б.1
Наименование материала, изделия |
Средняя плотность в конструкции, кг/м |
Теплопроводность материала (изделия) в конструкции , |
Температура применения, °С |
Группа горючести |
|
20 и выше |
19 и ниже |
||||
Маты из минеральной ваты прошивные теплоизоляционные, в том числе в обкладке из металлической сетки, базальтовой и кремнеземной ткани |
100 |
0,038+0,00021 |
0,038-0,027 |
От минус 180 до 700 |
НГ |
125 |
0,038+0,0002 |
0,038-0,027 |
|||
Маты из минеральной ваты прошивные теплоизоляционные в обкладке из стеклосетки, стеклоткани, стеклохолста |
100 |
0,038+0,00021 |
0,038-0,027 |
От минус 180 до 450 |
НГ |
125 |
0,038+0,0002 |
0,038-0,027 |
|||
Маты из минеральной ваты прошивные гофрированной структуры |
80 |
0,036+0,00022 |
0,035-0,027 |
От минус 180 до 700 |
НГ |
100 |
0,038+0,00021 |
0,038-0,027 |
|||
Маты из минеральной ваты рулонированные на синтетическом связующем |
60-80 |
0,036+0,00022 |
0,035-0,027 |
От минус 60 до 400 |
НГ |
Плиты из минеральной ваты на синтетическом связующем теплоизоляционные мягкие |
60-80 |
0,038+0,00029 |
0,038-0,029 |
От минус 60 до 400 |
НГ-Г1 |
Плиты из минеральной ваты на синтетическом связующем теплоизоляционные полужесткие |
90 |
0,039+0,00022 |
0,039-0,030 |
От минус 60 до 400 |
НГ-Г1 |
Плиты из минеральной ваты на синтетическом связующем теплоизоляционные жесткие |
100-140 |
0,039+0,00021 |
0,039-0,029 |
||
Полуцилиндры и цилиндры минераловатные |
80 |
0,044+0,00022 |
0,043-0,032 |
От минус 180 до 400 |
НГ |
100 |
0,049+0,00021 |
0,048-0,036 |
|||
150 |
0,050+0,0002 |
0,049-0,035 |
|||
Маты и вата из супертонкого базальтового волокна без связующего |
40-60 |
0,032+0,00019 |
0,031-0,024 |
От минус 180 до 700 |
НГ |
Шнур теплоизоляционный из минеральной ваты |
200 |
0,056+0,00019 |
0,055-0,04 |
От минус 180 до 600 |
НГ-Г1 |
Шнур асбестовый |
100-160 |
0,093+0,00019 |
— |
От плюс 20 до 220 |
Г1 |
Маты прошивные гофрированной структуры из стеклянного штапельного волокна, в том числе в обкладке из металлической сетки |
50 |
0,036+0,0002 |
0,037-0,03 |
От минус 60 до 450 |
НГ |
Маты и вата из супертонкого стеклянного волокна без связующего |
40-60 |
0,033+0,00014 |
0,032-0,024 |
От минус 180 до 400 |
НГ |
Теплоизоляционные изделия из пеностекла |
130 |
0,005+0,0002 |
0,005-0,038 |
От минус 150 до 350 |
НГ |
Армопенобетон |
200-300 |
0,055+0,0002 |
0,055 |
От минус 60 до 300 |
НГ |
Песок перлитовый, вспученный, мелкий |
110 |
0,052+0,00012 |
0,051-0,038 |
От минус 200 до 875 |
НГ |
150 |
0,055+0,00012 |
0,054-0,04 |
|||
225 |
0,058+0,00012 |
0,057-0,042 |
|||
Теплоизоляционные изделия из пенополистирола |
17 |
0,039+0,00018 |
0,038-0,025 |
От минус 100 до 80 |
Г3-Г4 |
25 |
0,036+0,00018 |
0,035-0,029 |
|||
Теплоизоляционные изделия из пенополиуретана |
40 |
0,030+0,00015 |
0,029-0,024 |
От минус 180 до 140 |
Г2-Г4 |
50 |
0,032+0,00015 |
0,031-0,025 |
|||
70 |
0,037+0,00015 |
0,036-0,027 |
|||
Пенополимерминерал |
270 |
0,036+0,0002 |
0,041 |
От минус 60 до 150 |
Г2-Г4 |
Теплоизоляционные изделия из вспененного каучука |
60-80 |
0,034+0,0002 |
0,033 |
От минус 60 до 125 |
Г1-Г3 |
Теплоизоляционные изделия из пенополиэтилена |
20 |
0,039+0,0002 |
0,035 |
От минус 70 до 70 |
Г1-Г4 |
50 |
0,035+0,00018 |
0,033 |
|||
Маты иглопробивные из базальтовых волокон |
100-140 |
0,038+0,00013 |
0,037 |
От минус 260 до 800 |
НГ |
Картон из базальтового волокна |
50-80 |
0,032+0,00012 |
0,031 |
От минус 200 до 800 |
НГ |
Примечания. 1 Средняя температура теплоизоляционного слоя, °С: =(+40)/2 — на открытом воздухе в летнее время, в помещении, в каналах, тоннелях, технических подпольях, на чердаках и в подвалах зданий; =/2 — на открытом воздухе, воздухе в зимнее время, где — температура среды внутри изолируемого оборудования (трубопровода). 2 Большее значение расчетной теплопроводности теплоизоляционного материала в конструкции для поверхностей с температурой 19°С и ниже относится к температуре изолируемой поверхности от минус 60°С до 19°С, меньшее — к температуре минус 61°С и ниже. 3 Коэффициент теплопроводности определяется в соответствии с ГОСТ 7076, ГОСТ 32025. 4 Группа горючести определяется по ГОСТ 30244. |
Таблица Б.1 (Измененная редакция, Изм. N 1).
Таблица Б.2 — Толщина металлических листов для покровного слоя тепловой изоляции
Наименование материала покровного слоя |
Толщина листа, мм, при диаметре изоляции, мм |
|||
350 и менее |
св. 350 до 600 |
св. 600 до 1600 |
св. 1600 и плоские поверхности |
|
Листы и ленты из нержавеющей стали |
0,35-0,5 |
0,5 |
0,5-0,8 |
0,8 |
Сталь тонколистовая оцинкованная с непрерывных линий |
0,35-0,5 |
0,5-0,8 |
0,8 |
1,0 |
Листы из тонколистовой стали, в том числе с полимерным покрытием |
0,35-0,5 |
0,5-0,8 |
0,8 |
1,0 |
Листы из алюминия и алюминиевых сплавов |
0,3 |
0,5-0,8 |
0,8 |
1,0 |
Ленты из алюминия и алюминиевых сплавов |
0,25-0,3 |
0,5-0,8 |
0,8 |
1,0 |
Таблица Б.3 — Композиционные рулонные материалы для покровного слоя тепловой изоляции
Наименование материала |
Толщина, мм |
Группа горючести |
Рулонный стеклопластик |
0,30-0,50 |
Г1-Г2 |
Стеклоткань, дублированная алюминиевой фольгой |
0,15-0,5 |
Г1 |
Фольга алюминиевая дублированная для теплоизоляционных конструкций |
0,25-1,5 |
Г1 |
Таблица Б.4 — Количество слоев пароизоляционного материала в зависимости от температуры изолируемой поверхности и срока эксплуатации
Наименование пароизоляционного материал |
Толщина, мм |
Сопро- |
Число слоев пароизоляционного материала при температуре |
|||||
от минус 60 до 19°С |
от минус 61 до минус 100°С |
ниже минус 100°С |
||||||
при сроке эксплуатации |
||||||||
8 лет |
12 лет |
8 лет |
12 лет |
8 лет |
12 лет |
|||
Полиэтиленовая пленка |
0,15-0,2 |
7-9 |
2 |
2 |
2 |
2 |
3 |
— |
Полиэтиленовая пленка термоусадочная |
0,21-0,3 |
9-13 |
1 |
1 |
1 |
1 |
2 |
2 |
Фольга алюминиевая |
0,06-0,1 |
5-10 |
1 |
2 |
2 |
2 |
2 |
2 |
Рубероид |
1 |
0,5 |
3 |
— |
— |
— |
— |
— |
1,5 |
1,1 |
2 |
3 |
3 |
— |
— |
— |
|
Примечания. 1 Допускается применение других материалов, обеспечивающих уровень сопротивления паропроницанию не ниже, чем у приведенных в таблице. 2 Для материалов с закрытой пористостью, имеющих коэффициент паропроницаемости менее 0,01 мг/(м·ч·Па), во всех случаях принимается один пароизоляционный слой. 3 Сопротивление паропроницанию определяется по ГОСТ 25898. |
Таблицы Б.2-Б.4 (Введены дополнительно, Изм. N 1).
Приложение В
(рекомендуемое)
Методы расчета тепловой изоляции оборудования и трубопроводов
В.1 Расчетные формулы стационарной теплопередачи в теплоизоляционных конструкциях
Поверхностная плотность теплового потока через плоские поверхности рассчитывается по формулам:
однослойная плоская стенка
; (В.1)
многослойная плоская стенка из слоев
. (В.2)
Линейная плотность теплового потока через цилиндрические поверхности рассчитывается по формулам:
однослойная цилиндрическая стенка
; (В.3)
многослойная цилиндрическая стенка из слоев
; (В.4)
где — поверхностная плотность теплового потока через плоскую теплоизоляционную конструкцию, Вт/м;
— температура среды внутри изолируемого объекта, °С;
— температура окружающей среды, °С;
— сопротивление теплоотдаче на внутренней поверхности стенки изолируемого объекта, м·°С/Вт;
— то же, на наружной поверхности теплоизоляции, м·°С/Вт;
— термическое сопротивление стенки изолируемого объекта, м·°С/Вт;
— то же, плоского слоя изоляции, м·°С/Вт;
— полное термическое сопротивление -слойной плоской изоляции;
— термическое сопротивление -го слоя, м·°С/Вт;
— линейная плотность теплового потока через цилиндрическую теплоизоляционную конструкцию, Вт/м;
— линейное термическое сопротивление теплоотдаче внутренней стенки изолируемого объекта, м·°С/Вт;
— то же, наружной изоляции, м·°С/Вт;
— линейное термическое сопротивление цилиндрической стенки изолируемого объекта, м·°С/Вт;
— то же, цилиндрического слоя изоляции, м·°С/Вт;
— полное линейное термическое сопротивление -слойной цилиндрической изоляции;
— линейное термическое сопротивление -го слоя, м·°С/Вт.
В уравнениях (В.1)-(В.4) сопротивления теплоотдаче и термические сопротивления стенок определяются по формулам:
; ; ; ; ; (В.5)*
; ; ; (В.6)
; ; (В.7)
________________
* Формула В.5 соответствует оригиналу. — Примечание изготовителя бахы данных.
где , — коэффициенты теплоотдачи внутренней поверхности стенки изолируемого объекта и наружной поверхности изоляции, Вт/(м·°С);
, , — коэффициенты теплопроводности соответственно материала стенки изолируемого объекта однослойной изоляции, изоляции -го слоя -слойной изоляции, Вт/(м·°С);
, , — толщина соответственно стенки изолируемого объекта, однослойной изоляции -го слоя -слойной изоляции, м;
, — внутренний и наружный диаметры стенки изолируемого объекта, м;
— наружный диаметр изоляции, м;
, — наружный и внутренний диаметры -го слоя -слойной изоляции, м.
Распределение температур в многослойной изоляции рассчитывается по формулам:
температуры на внутренней и наружной поверхностях стенки изолируемого объекта плоской формы:
; ; (В.8)
температура на наружной поверхности первого слоя изоляции, на границе первого и второго слоев
; (В.9)
и далее, начиная со второго слоя, на границах (-1)-го и -го слоев
; (В.10)
температура на наружной поверхности -слоя -слойной стенки:
. (В.11)
Распределение температур в цилиндрических многослойных изоляционных конструкциях рассчитывается по формулам:
; ; (В.12)
; (В.13)
; (В.14)
. (В.15)
Значения поверхностной и линейной плотности тепловых потоков, входящих в формулы (В.8)-(В.15), определяются по (В.1)-(В.4), а термические сопротивления — по (В.5)-(В.7).
При расчете многослойных конструкций по формулам (В.2), (В.4) необходимо знать коэффициенты теплопроводности изоляционных слоев. Поскольку они зависят от температуры должны быть известны средние температуры каждого слоя, для определения которых необходимо знать температуры на границах слоев. Для их расчета используется метод последовательных приближений, предусматривающий проведение нескольких расчетных операций.
На первом этапе для всех слоев средняя температура изоляции принимается равной полусумме температур внутренней и наружной среды, при этой температуре определяется теплопроводность всех теплоизоляционных слоев. Затем, по (2), (4) определяют значения или и по (В.8)-(В.11) для плоской и по (В.12)-(В.15) цилиндрической стенок рассчитывают температуры на границах слоев и средние температуры каждого слоя.
На втором этапе по найденным на первом этапе средним температурам слоев вновь определяют теплопроводность всех слоев, затем находят плотности потоков тепла и снова рассчитывают послойные температуры, и так далее до требуемой точности расчета. Например, до тех пор, пока послойные температуры на -м и ()-м шаге будут отличаться не более чем на 5%. В практических расчетах для этой цели необходимо проведение не более 3-4 расчетных операций.
В.2 Расчет тепловой изоляции оборудования и трубопроводов
В практических расчетах тепловой изоляции принимается ряд допущений, позволяющих использовать упрощенные расчетные формулы.
Сопротивление теплоотдаче от внутренней среды к внутренней поверхности стенки изолируемого объекта для жидких и газообразных сред является пренебрежимо малым в сравнении с термическим сопротивлением теплоизоляционного слоя и в практических расчетах может не учитываться.
Теплопроводность стенок изолируемого оборудования и трубопроводов, изготовленных из металла, в десятки раз превышает теплопроводность изоляции, поэтому термическим сопротивлением стенки также можно пренебречь без заметного снижения точности расчета.
С учетом указанных допущений в практических расчетах для определения теплового потока через изолированные стенки трубопроводов и оборудования используются следующие формулы:
для плоских поверхностей и цилиндрических диаметром более 2 м
; (В.16)
для трубопроводов диаметром менее 2 м
, (В.17)
где — коэффициент дополнительных потерь, учитывающий теплопотери через теплопроводные включения в теплоизоляционных конструкциях, обусловленных наличием в них крепежных деталей и опор (таблица В.1).
Таблица В.1- Значения коэффициента дополнительных потерь для трубопроводов
Тип изолируемого объекта |
Коэффициент |
Трубопроводы на открытом воздухе, в непроходных каналах, тоннелях и помещениях: |
|
а) стальные на подвижных опорах, условным проходом, мм: |
|
до 150 |
1,2 |
150 и более |
1,15 |
б) стальные на подвесных опорах |
1,05 |
в) неметаллические на подвижных и подвесных опорах |
1,7 |
Трубопроводы бесканальной прокладки |
1,15 |
Термическое сопротивление слоев тепловой изоляции и сопротивление внешней теплоотдаче в (В.16), (В.17) определяется по формулам (В.5), (В.6), в которых теплопроводность изоляции принимается по приложению Б, а коэффициент теплоотдачи на поверхности изоляции — по таблице В.2.
Таблица В.2 — Значения коэффициента теплоотдачи , Вт/(м·°С)
Изолированный объект |
В закрытом помещении |
На открытом воздухе при скорости ветра, м/с |
|||
Покрытия с низким коэффициентом излучения |
Покрытия с высоким коэффициентом излучения |
||||
5 |
10 |
15 |
|||
Горизонтальные трубопроводы |
7 |
10 |
20 |
26 |
35 |
Вертикальные трубопроводы, оборудование, плоская стенка |
8 |
12 |
26 |
35 |
52 |
К ним относятся покрытия из оцинкованной стали, листов алюминиевых сплавов и алюминия с оксидной пленкой. К ним относятся штукатурки, асбестоцементные покрытия, стеклопластики, различные окраски (кроме краски с алюминиевой пудрой). При отсутствии сведений о скорости ветра принимают значения, соответствующие скорости 10 м/с. |
При расчете тепловой изоляции объектов, расположенных под землей, учитывается их тепловое взаимодействие с массивом окружающего грунта.
Плотность теплового потока через теплоизоляционные конструкции, граничащие с грунтом, определяется по формулам (В.1)-(В.4), в которых термические сопротивления внешней теплоотдаче и заменяются термическим сопротивлением грунта.
В общем случае термическое сопротивление грунта зависит от конфигурации и расположения изолируемого объекта в массиве грунта, его температуры и теплопроводности, что влияет на распределение температур и тепловых потоков в теплоизоляционном слое.
В инженерных расчетах принимается допущение об одномерности температурного поля в теплоизоляционном слое, что позволяет с достаточной для практики точностью использовать формулы (В.5)-(В.7) для расчета термического сопротивления плоских и цилиндрических теплоизоляционных конструкций подземных объектов.
В.2.1 Расчет толщины тепловой изоляции по нормированной плотности теплового потока
Расчет толщины тепловой изоляции по нормированной плотности теплового потока — , для однослойных конструкций выполняется по следующим формулам.
Для плоских и цилиндрических поверхностей с диаметром 1,4 м и более используется формула
; (В.18)
Таблица В.3 — Ориентировочные значения , м·°С/Вт
Условный диаметр трубы, мм |
Внутри помещений |
На открытом воздухе |
|||||||
Для поверхностей с малым коэффициентом излучения |
Для поверхностей с высоким коэффициентом излучения |
||||||||
при температуре теплоносителя, °С |
|||||||||
100 |
300 |
500 |
100 |
300 |
500 |
100 |
300 |
500 |
|
32 |
0,50 |
0,35 |
0,30 |
0,33 |
0,22 |
0,17 |
0,12 |
0,09 |
0,07 |
40 |
0,45 |
0,30 |
0,25 |
0,29 |
0,20 |
0,15 |
0,10 |
0,07 |
0,05 |
50 |
0,40 |
0,25 |
0,20 |
0,25 |
0,17 |
0,13 |
0,09 |
0,06 |
0,04 |
100 |
0,25 |
0,19 |
0,15 |
0,15 |
0,11 |
0,10 |
0,07 |
0,05 |
0,04 |
125 |
0,21 |
0,17 |
0,13 |
0,13 |
0,10 |
0,09 |
0,05 |
0,04 |
0,03 |
150 |
0,18 |
0,15 |
0,11 |
0,12 |
0,09 |
0,08 |
0,05 |
0,04 |
0,03 |
200 |
0,16 |
0,13 |
0,10 |
0,10 |
0,08 |
0,07 |
0,04 |
0,03 |
0,03 |
250 |
0,13 |
0,10 |
0,09 |
0,09 |
0,07 |
0,06 |
0,03 |
0,03 |
0,02 |
300 |
0,11 |
0,09 |
0,08 |
0,08 |
0,07 |
0,06 |
0,03 |
0,02 |
0,02 |
350 |
0,10 |
0,08 |
0,07 |
0,07 |
0,06 |
0,05 |
0,03 |
0,02 |
0,02 |
400 |
0,09 |
0,07 |
0,06 |
0,06 |
0,05 |
0,04 |
0,02 |
0,02 |
0,02 |
500 |
0,075 |
0,065 |
0,06 |
0,05 |
0,045 |
0,04 |
0,02 |
0,02 |
0,016 |
600 |
0,062 |
0,055 |
0,05 |
0,043 |
0,038 |
0,035 |
0,017 |
0,015 |
0,014 |
700 |
0,055 |
0,051 |
0,045 |
0,038 |
0,035 |
0,032 |
0,015 |
0,013 |
0,012 |
800 |
0,048 |
0,045 |
0,042 |
0,034 |
0,031 |
0,029 |
0,013 |
0,012 |
0,011 |
900 |
0,044 |
0,041 |
0,038 |
0,031 |
0,028 |
0,026 |
0,012 |
0,011 |
0,010 |
1000 |
0,040 |
0,037 |
0,034 |
0,028 |
0,026 |
0,024 |
0,011 |
0,010 |
0,009 |
2000 |
0,022 |
0,020 |
0,017 |
0,015 |
0,014 |
0,013 |
0,006 |
0,006 |
0,005 |
Примечания. 1 Для промежуточных значений диаметров и температуры величина определяется интерполяцией. 2 Для температуры теплоносителя ниже 100 °С принимаются данные, соответствующие 100 °С. |
Для однослойных цилиндрических поверхностей с диаметром менее 1,4 м используется формула
. (В.19)
Коэффициент дополнительных тепловых потерь через опоры трубопроводов в расчете толщины тепловой изоляции по нормативной плотности теплового потока принимается равным 1.
При расчете по формуле (В.19) предварительно определяют величину , где . Приближенные значения принимаются по таблице В.3.
Затем находят величину и определяют требуемую толщину изоляции по формуле
. (В.20)
Для двухслойных теплоизоляционных конструкций расчет толщины слоев по нормированной плотности теплового потока производится в следующей последовательности.
В случае, когда максимальная температура применения одного из выбранных теплоизоляционных материалов ниже температуры стенки изолируемого объекта в двухслойных теплоизоляционных конструкциях в качестве первого слоя на изолируемую поверхность устанавливается материал с более высокой допустимой температурой применения.
Толщина первого слоя определяется из условия, чтобы температура между обоими слоями , не превышала максимальной температуры применения основного изоляционного материала.
Для плоской стенки и цилиндрических объектов с диаметром 2 м и более для расчета толщины первого слоя применяется формула
. (В.21)
Для второго слоя применяется формула (В.18), в которую вместо значения подставляется .
При расчете цилиндрических объектов с диаметром менее 2 м — аналогично однослойной конструкции по уравнению
, (В.22)
в котором , определяют величину , затем находят и толщину первого слоя, м:
.
Толщина второго слоя определяется с помощью формулы (В.19), в которой вместо значения подставляется значение , а вместо
.
Определив находят , а затем толщину изоляции второго слоя, м:
. (В.23)
Расчет требуемой толщины тепловой изоляции по нормативной плотности теплового потока может быть выполнен методом последовательных приближений. Последовательность расчета для однослойной цилиндрической конструкции следующая.
Задаваясь начальным значением толщины изоляции , м, определяемой требуемой точностью расчета, например, 0,001 м, с помощью последовательных шагов 1, 2, 3, 4, …, для толщины изоляции: ; ; , …, производят вычисление линейной плотности тепловых потоков ; ; …; по уравнению
. (В.24)
На каждом шаге вычислений производится сравнение с заданным значением нормативного удельного потока . При выполнении условия
(В.25)
вычисления заканчиваются, а найденная величина является искомой, обеспечивающей заданную величину тепловых потерь.
Расчетные параметры при определении толщины изоляции по нормируемой плотности теплового потока следует принимать по 6.1.1-6.1.6 настоящего свода правил.
В.2.1 (Измененная редакция, Изм. N 1).
В.2.2 Расчет толщины изоляции по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами
Требуемое полное термическое сопротивление изоляции трубопровода длиной , м, для обеспечения заданного снижения температуры транспортируемого по нему вещества от начальной до конечной при расходе вещества , кг/ч, теплоемкостью , кДж/(кг·°С) определяется из выражений:
при , ; (В.26)
при , , (В.27)
где — расчетная температура окружающей среды, °С.
Для определения требуемой толщины изоляции , м, по найденным значениям и используется формула
. (В.28)
Принимая приближенные значения по таблице В.3 и определяя по формуле (В.28) , находят величину и затем по формуле (В.20) толщину изоляции
.
Расчетные параметры при определении толщины тепловой изоляции по заданной величине снижения (повышения) температуры транспортируемого вещества принимаются по 6.4 настоящего свода правил.
В.2.3 Расчет толщины тепловой изоляции по заданной температуре наружной поверхности
Определение толщины изоляции по заданной температуре ее наружной поверхности производится в том случае, когда изоляция нужна как средство, предохраняющее обслуживающий персонал от ожогов.
Расчет толщины тепловой изоляции выполняется по формулам:
для плоских теплоизоляционных конструкций
; (В.29)
для цилиндрических
, (В.30)
где ориентировочное значение принимается по таблице В.3.
.
Рассмотренный метод является приближенным. Более точные результаты могут быть получены методом последовательных приближений.
Расчет выполняется по формуле
. (В.31)
Задаваясь начальным значением толщины изоляции , м, определяемым требуемой точностью расчета, например, 0,001 м, последовательными шагами 1, 2, 3, …., для толщин изоляции: ; ; , …, производится вычисление величин:
; ; ; …; по уравнению (B.31).
На каждом шаге вычислений производится сравнение с заданным значением . При выполнении условия
(B.32)
вычисления заканчиваются, а найденная величина является с точностью до 1 мм заданной, обеспечивающей требуемую температуру поверхности изоляции.
Расчетные параметры при расчете толщины тепловой изоляции по заданной температуре поверхности принимаются по 6.7.
В.2.4 Расчет толщины изоляции, предотвращающей конденсацию влаги из воздуха на ее поверхности
Данный расчет производится для изолированных объектов, расположенных в помещениях и содержащих вещества с температурой ниже температуры окружающего воздуха.
В этом случае изоляция должна обеспечивать требуемый расчетный перепад между температурами наружного воздуха и поверхностью изоляции (), при котором исключается конденсация влаги из воздуха (таблица В.4).
Таблица В.4 — Расчетный перепад , °С
, °C |
Относительная влажность воздуха , % |
|||||
40 |
50 |
60 |
70 |
80 |
90 |
|
10 |
13,4 |
10,4 |
7,8 |
5,5 |
3,5 |
1,6 |
15 |
14,2 |
10,9 |
9,1 |
5,7 |
3,6 |
1,7 |
20 |
14,8 |
11,3 |
8,4 |
5,9 |
3,7 |
1,8 |
25 |
15,3 |
11,7 |
8,7 |
6,1 |
3,8 |
1,9 |
30 |
15,9 |
12,2 |
9,0 |
6,3 |
4,0 |
2,0 |
Расчет выполняется по формулам:
для плоской поверхности
; ; (В.33)
для цилиндрической поверхности
; . (В.34)
Требуемая толщина изоляции определяется по методике, изложенной в В.2.3.
В расчетах температуру наружной среды следует принимать равной температуре воздуха в помещении.
Температуру внутренней среды и относительную влажность воздуха в помещении принимают в соответствии с техническим заданием на проектирование.
Коэффициент теплоотдачи к наружной поверхности изоляции принимается для поверхностей с низким коэффициентом излучения — 5 Вт/(м·°С), для поверхностей с высоким коэффициентом излучения — 7 Вт/(м·°С) (см. примечание к таблице В.2).
В.2.5 Расчет тепловой изоляции паропроводов по заданным параметрам пара
Для паропроводов насыщенного пара заданными параметрами являются давление, температура и допустимая доля конденсата в паропроводе. Толщина тепловой изоляции рассчитывается по следующей формуле
, (В.34а)
где — допустимое количество конденсата по длине паропровода, кг/с;
— расчетная длина паропровода, принимаемая с учетом тепловых потерь через опоры, арматуру и фланцевые соединения, м;
— скрытая теплота конденсации, кДж/кг.
Для паропроводов перегретого пара заданными параметрами являются начальные и конечные температура и давление пара и допустимое падение температуры по длине паропровода. Требуемая толщина тепловой изоляции определяется по следующей формуле
, (В.34б)
где — средняя температура пара в паропроводе, равная среднеарифметическому значению начальной и конечной температуры пара, °С;
, — удельная энтальпия пара, соответственно, в начале и конце паропровода, определяемая по таблицам термодинамических свойств воды и водяного пара при заданных температуре и давлении перегретого пара в начале и конце паропровода, кДж/кг;
— массовый расход пара в паропроводе, кг/с;
— внутренний диаметр паропровода, м.
Уравнения (В.34а), (В.34б) решаются методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.6. Расчет тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях газоходов
Для газоходов прямоугольного сечения и цилиндрических, диаметром более 2 м, расчет требуемой толщины изоляции выполняется по формуле
, (В.34в)
где — температура внутренней поверхности стенки газохода, °С;
— коэффициент теплоотдачи от газа к внутренней поверхности стенки газохода, Вт/(м·°С);
Для газоходов диаметром менее 2 м, расчет выполняется по формуле
, (В.34г)
где — внутренний диаметр стенки газохода.
Температура внутренней стенки газохода устанавливается в техническом задании на проектирование тепловой изоляции в зависимости от температуры и влажности транспортируемого газа. Выпадение конденсата из газа, протекающего в газоходе, происходит при условии, что температура внутренней стенки газохода оказывается ниже, чем температура конденсации влаги из газа («точка росы») при заданной его температуре и влажности. Поэтому расчетная температура внутренней стенки газохода принимается на 2°С-3°С выше температуры конденсации («точки росы») при заданной температуре и влажности транспортируемого газа.
Коэффициент теплоотдачи рассчитывается по эмпирическим (критериальным) формулам теплообмена при вынужденном движении газа (жидкости) в трубах и каналах прямоугольного сечения в зависимости от температуры и скорости движения газа и режима течения, определяемого отношением длины газохода к его диаметру.
При турбулентном режиме движения газа в газоходе расчет выполняется по формуле
, (В.34д)
где — критерий Нуссельта;
— критерий Рейнольдса;
— критерий Прандтля;
— скорость движения газа в газоходе, м/с;
— диаметр трубопровода или эквивалентный диаметр канала, м;
, , — соответственно, коэффициент теплопроводности [Вт/(м·К)], кинематическая вязкость (м/с) и коэффициент температуропроводности газа (м/с), принимаемые по таблицам физических свойств газов.
При ламинарном и переходном режимах течения газа (при отношении длины газохода к его диаметру — менее 50), к коэффициенту теплоотдачи вводится поправочный множитель =1,3 при значении =1,010 и =1,1 при значении =1050.
Уравнение (В.34г) решается методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.7 Расчет тепловой изоляции трубопроводов с целью предотвращения замерзания содержащейся в них жидкости при остановке ее движения
Расчет толщины изоляции трубопровода по заданному времени отсутствия движения жидкости Z
основан на уравнении теплового баланса, в соответствии с которым тепло, аккумулированное в жидкости, и тепло, выделяющееся при замерзании некоторой части жидкости (25% сечения трубопровода), приравнивается количеству тепла, отдаваемого изолированным трубопроводом в окружающую среду за период остановки движения жидкости.
Процесс теплообмена при охлаждении и замерзании жидкости в трубопроводе является нестационарным. Расчет требуемой в этом случае толщины тепловой изоляции с достаточной для инженерной практики степенью точности выполняется по формулам стационарного теплообмена.
Толщина изоляционного слоя определяется по формуле
, (В.34е)
где — температура жидкости до остановки ее движения, °С;
— температура замерзания жидкости, °С;
— температура окружающего воздуха, °С;
Z
— заданное время остановки движения жидкости, ч;
— объем жидкости, м;
— плотность жидкости, кг/м;
— удельная теплоемкость жидкости, кДж/(кг·°С);
— объем материала стенки трубопровода, м;
— плотность материала стенки, кг/м;
— удельная теплоемкость материала стенки, кДж/(кг·°С);
0,25 — допустимая доля замерзания жидкости (25% от объема);
— скрытая теплота замерзания жидкости, кДж/кг;
— коэффициент, учитывающий потери тепла через опоры.
Уравнение (В.34 е) решается методом последовательных приближений. Толщина изоляции вычисляется по формуле (В.20).
В.2.5-В.2.7 (Введены дополнительно, Изм. N 1).
В.3 Расчет тепловой изоляции трубопроводов тепловых сетей
В.3.1 Надземная прокладка
Тепловые потери через изолированную поверхность подающих и обратных трубопроводов тепловых сетей при надземной прокладке, при известной толщине изоляции , м, следует определять по формуле (В.17), а термические сопротивления, входящие в эту формулу, — по (В.6). В качестве температур внутренней и наружной сред и принимают расчетные температуры теплоносителя и окружающего воздуха, а коэффициент теплоотдачи — по таблице В.2.
При определении толщины изоляции трубопроводов тепловых сетей по нормированным значениям плотности тепловых потоков от подающих и обратных теплопроводов используется методика расчетов, изложенная в разделе В.2.1. При этом расчетные температуры теплоносителя в подающем и обратном трубопроводе принимают по таблице В.5.
Таблица В.5 — Среднегодовые температуры теплоносителя в водяных тепловых сетях, °С
Трубопровод |
Расчетные температурные режимы, °С |
||
95-70 |
150-70 |
180-70 |
|
Подающий |
65 |
90 |
110 |
Обратный |
50 |
50 |
50 |
Расчетную температуру наружной среды принимают: при круглогодичной работе тепловой сети — среднегодовую температуру наружного воздуха, при работе только в отопительный период — среднюю температуру отопительного периода. Расчетный коэффициент теплоотдачи — по таблице В.2.
В.3.2 Подземная прокладка в непроходных каналах
Тепловые потери через изолированную поверхность двухтрубных тепловых сетей, прокладываемых в непроходном канале шириной и высотой , м, на глубине , м, от поверхности земли до оси канала определяются по формуле
. (В.35)
Температура воздуха в канале определяется по формуле
, (В.36)
где ; ; (В.37)
; ; (В.38)
, (В.39)
здесь , — линейные плотности теплового потока от подающего и обратного трубопроводов, Вт/м;
, — наружные диаметры подающего и обратного трубопроводов, м;
, — температуры подающего и обратного трубопроводов, °С;
— коэффициент дополнительных потерь (таблица В.1);
, — термические сопротивления изоляции подающего и обратного трубопроводов, м·°С/Вт;
, — термические сопротивления теплоотдаче от поверхности изоляции подающего и обратного трубопроводов, м·°С/Вт;
— термическое сопротивление теплоотдаче от воздуха к поверхности канала, м·°С/Вт;
, — высота и ширина канала, соответственно, м;
— коэффициент теплоотдачи в канале, принимается равным 11 Вт/(м·°С);
— теплопроводность изоляции в конструкции, Вт/(м·°С);
, — толщины изоляции подающего и обратного трубопроводов, м;
— термическое сопротивление грунта, Вт/(м·°С), определяется по формуле
; (В.40)
— теплопроводность грунта, Вт/(м·°С), таблица В.6.
— глубина заложения, расстояние от оси трубы до поверхности земли, м.
Таблица В.6 — Теплопроводность грунта
Вид грунта |
Средняя плотность, кг/м |
Весовое влагосодержание грунта, % |
Коэффициент теплопроводности, Вт/(м·°С) |
Песок |
1480 |
4 |
0,86 |
1600 |
5 |
1,11 |
|
15 |
1,92 |
||
23,8 |
1,92 |
||
Суглинок |
1100 |
8 |
0,71 |
15 |
0,9 |
||
1200 |
8 |
0,83 |
|
15 |
1,04 |
||
1300 |
8 |
0,98 |
|
15 |
1,2 |
||
1400 |
8 |
1,12 |
|
15 |
1,36 |
||
20 |
1,63 |
||
1500 |
8 |
1,27 |
|
15 |
1,56 |
||
20 |
1,86 |
||
1600 |
8 |
1,45 |
|
15 |
1,78 |
||
2000 |
5 |
1,75 |
|
10 |
2,56 |
||
11,5 |
2,68 |
||
Глинистый |
1300 |
8 |
0,72 |
18 |
1,08 |
||
40 |
1,66 |
||
1500 |
8 |
1,0 |
|
18 |
1,46 |
||
40 |
2,0 |
||
1600 |
8 |
1,13 |
|
27 |
1,93 |
Расчет требуемой толщины тепловой изоляции по нормированной плотности теплового потока в зависимости от технических требований может выполняться в двух вариантах:
-
а) по нормативным линейным плотностям теплового потока и , заданным отдельно для подающего и обратного трубопровода, в этом случае определяется толщина изоляции для каждого трубопровода;
-
б) по суммарной нормативной линейной плотности теплового потока от подающего и обратного трубопровода — , в этом случае определяется толщина изоляции, одинаковая для обоих трубопроводов.
Расчет толщины изоляции по нормативным линейным плотностям теплового потока, заданным отдельно для подающего — и обратного — трубопроводов выполняется в следующей последовательности.
На первом этапе рассчитывают температуру в канале по формуле
. (В.41)
Затем для каждого трубопровода вычисляются значения и по формулам:
; (В.42)
, (В.43)
где приближенные значения и принимаются по таблице В.3.
Далее, после вычисления и , по формуле (В.20) рассчитывают требуемые толщины изоляции для подающего и обратного трубопроводов, обеспечивающие нормативные линейные потери тепла:
; .
Расчет толщины изоляции подающего и обратного трубопроводов по суммарной нормативной линейной плотности теплового потока — , Вт/м, выполняется методом последовательных приближений (методом подбора).
На первом этапе задаются начальным значением толщины изоляции , одинаковой для подающего и обратного трубопроводов, и по формулам (В.36)-(В.39) рассчитывают температуру в канале. Затем по формуле (В.35) вычисляют суммарную линейную плотность теплового потока .
Полученное расчетное значение сравнивают с нормативной линейной плотностью теплового потока по таблицам 8, 9.
На втором этапе увеличивают или уменьшают толщину изоляции в зависимости от результата сравнения и повторяют расчет в той же последовательности до получения нового расчетного значения — .
Расчет повторяют до тех пор, пока расчетное значение плотности теплового потока — будет отличаться от нормативного значения — на заданную степень точности расчета, например, не более, чем на 1%. Последнее значение принимается в качестве расчетной толщины тепловой изоляции для подающего и обратного трубопроводов.
При расчете тепловой изоляции двухтрубных тепловых сетей в непроходных каналах расчетную температуру теплоносителя в подающих и обратных трубопроводах принимают по таблице В.5.
Расчетную температуру наружной среды принимают равной среднегодовой температуре грунта на глубине заложения трубопровода.
Коэффициент дополнительных тепловых потерь при расчете толщины изоляции по нормированной плотности теплового потока принимается равным 1.
При расстоянии от поверхности грунта до перекрытия канала 0,7 м и менее за расчетную температуру наружной среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.
В.3.3 Подземная бесканальная прокладка
Тепловые потери трубопроводов двухтрубных тепловых сетей бесканальной прокладки, расположенных в грунте на одинаковом расстоянии от поверхности до оси труб , м, определяются по формулам:
; (В.44)
; (В.45)
, (В.46)
где — термическое сопротивление грунта при бесканальной прокладке, м·°С/Вт, определяется по формуле
, (В.47)
где — наружный диаметр изолированного трубопровода, м; подающего — , обратного — ;
— теплопроводность грунта, Вт/(м·°С);
— глубина заложения (расстояние от оси труб до поверхности земли), м;
— термическое сопротивление, обусловленное тепловым взаимодействием двух труб, м·°С/Вт, определяется из выражения
, (В.48)
где — расстояния между осями труб по горизонтали, м.
Остальные значения величин в (В.44), (В.45) те же, что и в формуле (В.37) для канальной прокладки.
Так же, как при прокладке двухтрубных тепловых сетей в проходных каналах расчет требуемой толщины тепловой изоляции по нормированной плотности теплового потока в зависимости от технических требований может выполняться в двух вариантах:
-
а) по нормативным значениям линейной плотности теплового потока и , заданным отдельно для подающего и обратного трубопроводов;
-
б) по суммарной нормативной линейной плотности теплового потока от подающего и обратного трубопроводов — .
Расчет толщины изоляции трубопроводов тепловых сетей бесканальной прокладки по нормативным значениям линейной плотности теплового потока, заданным отдельно для подающего и обратного трубопровода выполняют по формулам:
; (В.49)
. (В.50)
Определив с помощью (В.49), (В.50) значения и , вычисляют толщины изоляции так же, как и для канальной прокладки в разделе В.3.2.
Расчет толщины изоляции подающего и обратного трубопроводов двухтрубных тепловых сетей бесканальной прокладки по суммарной нормативной линейной плотности теплового потока , Вт/м, выполняется методом последовательных приближений (методом подбора).
На первом этапе задаются начальным значением толщины изоляции , одинаковой для подающего и обратного трубопроводов, и по формулам (В.44)-(В.46) рассчитывают суммарную линейную плотность теплового потока .
Полученное расчетное значение сравнивают с нормативной линейной плотностью теплового потока (по таблицам 11, 12).
На втором этапе увеличивают или уменьшают толщину изоляции в зависимости от результата сравнения и повторяют расчет в той же последовательности до получения нового расчетного значения .
Расчет повторяют до тех пор, пока расчетное значение плотности теплового потока будет отличаться от нормативного значения на заданную степень точности расчета, например, не более, чем на 1%. Последнее значение принимается в качестве расчетной толщины тепловой изоляции для подающего и обратного трубопроводов.
Расчетные параметры теплоносителя и наружной среды для расчета изоляции трубопроводов двухтрубных тепловых сетей бесканальной прокладки принимаются такими же, как и в непроходных каналах.
В.4 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками
В.4.1 Общие положения
В.4.1.1 Проектирование системы обогрева трубопроводов с паровыми и водяными спутниками осуществляется на основании технологических требований к конкретному объекту и технико-экономических расчетов.
Выбор числа и диаметров обогревающих спутников, системы их теплоснабжения и схемы подключения осуществляется на основании результатов теплового и гидравлического расчета системы обогрева с учетом вида теплоносителя, протяженности обогреваемого участка, располагаемого давления в системе теплоснабжения и других факторов.
Проектирование тепловой изоляции трубопроводов со спутниками выполняется на основании технологических требований с учетом расположения объекта, конструктивных и технологических параметров обогреваемого трубопровода и обогревающих его спутников, расчетных параметров окружающей среды.
В.4.2 Расчет тепловой изоляции трубопроводов, обогреваемых паровыми или водяными спутниками
В.4.2.1 Тепловая изоляция предназначена для обеспечения заданной температуры теплоносителя в любом сечении по длине трубопровода при условии безостановочного движения теплоносителя.
Методика расчета реализует следующую физическую модель теплообмена спутника с трубопроводом и теплоизоляционной конструкции с окружающей средой:
-
тепло от спутника передается воздуху в пространстве, ограниченном теплоизоляционной конструкцией;
-
тепло от воздуха в пространстве, ограниченном теплоизоляционной конструкцией, передается теплоносителю через поверхность трубопровода, контактирующую с воздухом в пространстве и наружному воздуху через поверхность теплоизоляционной конструкции, контактирующей с воздухом в пространстве;
-
количество тепла, передаваемого через поверхность теплоизоляционной конструкции, контактирующей с трубопроводом, наружному воздуху равно количеству тепла, получаемого трубопроводом от воздуха в конструкции.
Указанная модель описывается двумя уравнениями теплового баланса:
, (В.51)
, (В.52)
где — удельный тепловой поток от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, Вт/м;
— удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, через теплоизоляционный слой к окружающему воздуху, Вт/м;
— удельный тепловой поток от обогреваемого трубопровода к окружающему воздуху через теплоизоляционный слой в части, контактирующей с трубопроводом, Вт/м;
— удельный тепловой поток от воздуха в пространстве, ограниченном тепловой изоляцией, к трубопроводу, Вт/м.
Уравнения (В.51), (В.52) могут быть представлены в виде:
(В.53)
, (В.54)
где — температура трубопровода, °С;
— температура окружающего воздуха, °С;
— температура воздуха в пространстве, ограниченном изоляцией, °С;
— удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт;
— термическое сопротивление теплоизоляционного слоя, в части, контактирующей с воздухом в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт;
— термическое сопротивление теплоизоляционного слоя, в части, контактирующей с трубопроводом, (м·°С)/Вт;
— удельное термическое сопротивление теплоотдаче от воздуха в пространстве, ограниченном тепловой изоляцией, к трубопроводу, (м·°С)/Вт.
В.4.2.2 Требуемая толщина тепловой изоляции рассчитывается путем совместного решения уравнений (В.53), (В.54) методом последовательных приближений. Расчет выполняется в следующей последовательности.
На первом этапе рассчитываются термические сопротивления , , , .
Далее, решением уравнения (В.53) определяется температура воздуха в пространстве, ограниченном теплоизоляционной конструкцией — .
При найденном значении уравнение (В.54) решается методом последовательных приближений относительно .
В.4.2.3 Температура спутника в расчетах принимается:
-
при обогреве паром — равной температуре насыщения при заданном давлении пара в спутнике;
-
при обогреве водой — вычисляется по формуле
, (В.55)
где — температура воды на входе в спутник, °С;
— температура воды на выходе из спутника, °С.
В.4.2.4 Удельное термическое сопротивление теплоотдаче от спутника к воздуху в пространстве, ограниченном тепловой изоляцией, (м·°С)/Вт, следует вычислять по формуле
, (В.56)
где — число спутников;
— коэффициент теплоотдачи спутника, Вт/(м·°С);
— наружный диаметр спутника, м.
Коэффициент теплоотдачи от спутника в пространство, ограниченное изоляцией, определяется по формуле
, (В.57)
где — эффективный критерий Нуссельта;
— коэффициент теплопроводности воздуха, Вт/(м·К).
Критерий является функцией произведения () и рассчитывается по эмпирической формуле
, (В.58)
где — критерий Грасгофа;
— критерий Прандтля.
Произведение критериев Грасгофа и Прандтля () рассчитывается по формуле
, (В.59)
где — ускорение свободного падения, равное 9,807 м/с;
— коэффициент объемного расширения воздуха, равный 3,664·10 1/К;
— коэффициент температуропроводности воздуха, м/с;
— кинематическая вязкость воздуха, м/с.
Физические параметры сухого воздуха — , , , принимаются по таблице В.7 при средней температуре воздуха в конструкции, определяемой по формуле
. (В.60)
Таблица В.7 — Физические свойства сухого воздуха при давлении 0,1 МПа
t |
, кг/м |
, кДж/(кг·К) |
·10, Вт/(м·К) |
·10, м/с |
·10, м/с |
|
0 |
1,293 |
1,005 |
2,44 |
13,28 |
18,8 |
0,707 |
10 |
1,247 |
1,005 |
2,51 |
14,16 |
20,0 |
0,705 |
20 |
1,205 |
1,005 |
2,59 |
15,06 |
21,4 |
0,703 |
30 |
1,165 |
1,005 |
2,67 |
16,00 |
22,9 |
0,701 |
40 |
1,128 |
1,005 |
2,76 |
16,96 |
24,3 |
0,699 |
50 |
1,093 |
1,005 |
2,83 |
17,95 |
25,7 |
0,698 |
60 |
1,060 |
1,005 |
2,90 |
18,97 |
26,2 |
0,696 |
70 |
1,029 |
1,009 |
2,96 |
20,02 |
28,6 |
0,694 |
80 |
1,000 |
1,009 |
3,05 |
21,09 |
30,2 |
0,692 |
90 |
0,972 |
1,009 |
3,13 |
22,10 |
31,9 |
0,690 |
100 |
0,946 |
1,009 |
3,21 |
23,13 |
33,6 |
0,688 |
120 |
0,898 |
1,009 |
3,34 |
25,45 |
36,8 |
0,686 |
140 |
0,854 |
1,013 |
3,49 |
27,80 |
40,3 |
0,684 |
160 |
0,815 |
1,017 |
3,64 |
30,09 |
43,9 |
0,682 |
180 |
0,779 |
1,022 |
3,78 |
32,49 |
47,5 |
0,681 |
200 |
0,746 |
1,026 |
3,93 |
34,85 |
51,4 |
0,680 |
250 |
0,674 |
1,038 |
4,27 |
40,61 |
61,0 |
0,677 |
300 |
0,615 |
1,047 |
4,60 |
48,33 |
71,6 |
0,674 |
В.4.2.5 Термическое сопротивление теплоизоляционного слоя , (м·°С)/Вт, рассчитывается по формуле теплопередачи через плоскую стенку:
, (В.61)
где — толщина изоляции, м;
— длина внутренней образующей изоляции, м;
— длина наружной образующей изоляции, м;
. (В.62)
При расчете принимается приближенное значение толщины изоляции .
Геометрические характеристики конструкции , рассчитываются в зависимости от вида конструкции (рисунок В.1) с использованием соотношений элементарной геометрии и тригонометрических функций.
Коэффициент теплопроводности изделий в конструкции , Вт/(м·К), принимается по таблице Б.1 приложения Б при средней температуре слоя:
. (В.63)
Коэффициент теплоотдачи от воздуха внутри пространства, ограниченного изоляцией, к внутренней поверхности изоляции следует принимать равным 11,6 Вт/м·°С.
Коэффициент теплоотдачи от наружной поверхности изоляции в окружающий воздух , Вт/(м·°С), следует принимать по таблице В.2.
1
— диаметр обогреваемого трубопровода; 2
— диаметр спутника; 3
— толщина теплоизоляционного слоя; 4
— длина линейного участка образующей в конструкции ; 5
— длина образующей в формуле (В.68) для конструкции с одним и с двумя спутниками; 6
— угол — в конструкции с одним спутником; угол — в конструкции с двумя спутниками; 7
— угол — в конструкции с одним спутником; угол — в конструкции с двумя спутниками; 8
— длина линейного участка образующей в конструкции с двумя спутниками ;
Рисунок В.1
— Конструкции тепловой изоляции трубопроводов с обогревающими их паровыми и водяными спутниками:
а) — с одним спутником; б) — с двумя спутниками
В.4.2.6 Термическое сопротивление изоляционного слоя , (м·°С)/Вт, вычисляется по формуле
, (В.64)
где — угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.
В.4.2.7 Удельное термическое сопротивление теплоотдаче от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу, (м·°С)/Вт, следует вычислять по формуле
, (В.65)
где — угол, характеризующий геометрию теплоизоляционной конструкции (рисунок В.1), радиан.
Коэффициент теплоотдачи от воздуха внутри пространства, ограниченного изоляцией, к трубопроводу следует принимать равным 17,4 т/(м·°С).
В.4.2.8 Расчет толщины теплоизоляционного слоя выполняется по формуле
. (В.66)
Формула (В.66) решается методом последовательных приближений. Первое приближение толщины изоляции принимается равным принятому при расчете термического сопротивления . Толщина изоляции вычисляется по формуле (В.20).
В.4.2.9 Расчетную толщину изоляции вычисляют по формуле
, (В.67)
где — коэффициент, учитывающий дополнительные тепловые потери через опоры и арматуру. Для трубопроводов, расположенных в помещении и тоннелях, =1,15-1,2; для трубопроводов, расположенных на открытом воздухе, =1,25-1,3;
— поправочный коэффициент. При расчетах теплоизоляционных конструкций с естественным углом обогрева без подкладки (рисунок В.1) вводится =1,15.
В.4.2.10 При использовании экрана из алюминиевой фольги, укладываемой в качестве подстилающего слоя под теплоизоляционный слой, расчетную толщину изоляции следует уменьшать на 20 %.
Подраздел В.4 (Введен дополнительно, Изм. N 1).
Приложение Г
(рекомендуемое)
Таблица Г.1 — Предельные толщины теплоизоляционных конструкций для оборудования и
трубопроводов
Наружный диаметр, мм |
Способ прокладки трубопровода |
|||||
надземный |
в тоннеле |
в непроходном канале |
||||
Предельная толщина теплоизоляционного слоя, мм, при температуре, °С |
||||||
19 и ниже |
20 и более |
19 и ниже |
20 и более |
до 150 вкл. |
151 и более |
|
18 |
80 |
80 |
80 |
80 |
50 |
60 |
25 |
120 |
120 |
100 |
100 |
60 |
80 |
32 |
140 |
140 |
120 |
100 |
80 |
100 |
45 |
140 |
140 |
120 |
100 |
80 |
100 |
57 |
150 |
150 |
140 |
120 |
90 |
120 |
76 |
160 |
160 |
160 |
140 |
90 |
140 |
89 |
180 |
170 |
180 |
160 |
100 |
140 |
108 |
180 |
180 |
180 |
160 |
100 |
160 |
133 |
200 |
200 |
180 |
160 |
100 |
160 |
159 |
220 |
220 |
200 |
160 |
120 |
180 |
219 |
230 |
230 |
200 |
180 |
120 |
200 |
273 |
240 |
230 |
220 |
180 |
120 |
200 |
325 |
240 |
240 |
240 |
200 |
120 |
200 |
377 |
260 |
240 |
260 |
200 |
120 |
200 |
426 |
280 |
250 |
280 |
220 |
140 |
220 |
476 |
300 |
250 |
300 |
220 |
140 |
220 |
530 |
320 |
260 |
320 |
220 |
140 |
220 |
630 |
320 |
280 |
320 |
240 |
140 |
220 |
720 |
320 |
280 |
320 |
240 |
140 |
220 |
820 |
320 |
300 |
320 |
240 |
140 |
220 |
920 |
320 |
300 |
320 |
260 |
140 |
220 |
1020 и более |
320 |
320 |
320 |
260 |
140 |
220 |
Примечания. 1 Для трубопроводов, расположенных в каналах, толщина изоляции указана для положительных температур транспортируемых веществ. Для трубопроводов с отрицательными температурами транспортируемых веществ предельные толщины следует принимать такими же, как при прокладке в тоннелях. 2 В случае, если расчетная толщина изоляции больше предельной, следует принимать более эффективный теплоизоляционный материал и ограничиться предельной толщиной тепловой изоляции, если это допустимо по условиям технологического процесса. |
Приложение Д
(справочное)
Определение толщины и объема теплоизоляционных изделий из уплотняющихся материалов
Д.1 Толщину теплоизоляционного изделия из уплотняющихся материалов до установки на изолируемую поверхность следует определять с учетом коэффициента уплотнения по формулам:
для цилиндрической поверхности
, (Д.1)
для плоской поверхности
, (Д.2)
где , — толщина теплоизоляционного изделия до установки на изолируемую поверхность (без уплотнения), м;
— расчетная толщина теплоизоляционного слоя с уплотнением в конструкции, м;
— наружный диаметр изолируемого оборудования, трубопровода, м;
— коэффициент уплотнения теплоизоляционных изделий, принимаемый по таблице Д.1.
Примечания.
1 В случае, если в формуле (Д.1) произведение меньше единицы, оно должно приниматься равным единице.
2 При многослойной изоляции толщину изделия до его уплотнения следует определять отдельно для каждого слоя. При определении толщины последующего теплоизоляционного слоя за наружный диаметр () принимают диаметр изоляции предыдущего слоя.
3 Объем теплоизоляционных изделий из уплотняющихся материалов для теплоизоляционного слоя до уплотнения следует определять по формуле
, (Д.3)
где — объем теплоизоляционного материала или изделия до уплотнения, м;
— объем теплоизоляционного материала или изделия в конструкции с учетом уплотнения, м.
Таблица Д.1
Теплоизоляционные материалы и изделия |
Коэффициент уплотнения, |
Маты минераловатные прошивные сжимаемостью не более 55% |
1,2 |
Маты минераловатные рулонированные сжимаемостью не более 55% |
1,35-1,2 |
Маты и холсты из супертонкого базальтового волокна при укладке на трубопроводы и оборудование условным проходом, мм: |
|
800 при средней плотности 23 кг/м |
3,0 |
То же, при средней плотности 50-60 кг/м |
1,5 |
800 при средней плотности 23 кг/м |
2,0 |
То же, при средней плотности 50-60 кг/м |
1,5 |
Изделия вертикально-слоистые (ламелла-маты), маты прошивные гофрированной структуры из стеклянного волокна и каменной ваты сжимаемостью: |
|
не более 30% |
1,0-1,1 |
Маты рулонированные из стеклянного штапельного волокна сжимаемостью: |
|
не более 55% |
1,4-1,6 |
55-70% |
1,6-2,6 |
более 70% |
2,6-3,6 |
Плиты минераловатные на синтетическом связующем марки |
|
35, 50 |
1,5 |
75 |
1,2 |
100 |
1,1 |
125 |
1,05 |
Плиты из стеклянного штапельного волокна марки: |
|
П-30 |
1,1 |
П-15, П-17 и П-20 |
1,2 |
Песок перлитовый вспученный мелкий марки 75, 100, 150 |
1,5 |
Примечание — Сжимаемость — относительная деформация материала под нагрузкой 2 кПа, определяется по ГОСТ 17177. |
Таблица Д.1 (Измененная редакция, Изм. N 1).
_________________________________________________________________________________________
УДК [69+699.8] (083.74) ОКС 91.120.10
Ключевые слова: изоляция тепловая, оборудование, трубопровод, проектирование
_________________________________________________________________________________________