Время безотказной работы устройства распределено по показательному закону с параметром

Задача 29119 4. Время безотказной работы элемента…

Условие

4. Время безотказной работы элемента распределено по показательному закону f(t) = 0,01e^(-0,01t) (t > 0), где t — время, ч. Найти
вероятность того, что элемент проработает безотказно 100 ч.
Отв. R (100) = 0,37.

математика ВУЗ
4542

Решение

Функция надежности в случае распределения случайной величины по показательному закону имеет вид:
R(t)=1- F(t)=1-(1-e^(-лямбдаt)= e^(-лямбда t)

По условию,
лямбда =0,01
t=100

R (100) = е^(-0,01*100)=е^(-1) = 1/e ≈ 0,37.

О т в е т.
Вероятность того, что элемент проработает безотказно 100 ч, приближенно равна 0,37.

Написать комментарий

Показательное распределение

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины

, которое описывается плотностью:

где

 –
постоянная положительная величина.

Показательное
распределение определяется одним параметром

. Эта особенность распределения указывает на
его преимущество по сравнению с распределениями, зависящими от большего числа
параметров. Обычно параметры неизвестны и приходится находить их оценки
(приближенные значения); разумеется,  проще оценить один параметр, чем два или три.
Примером непрерывной случайной величины, распределенной по показательному
закону, может служить время между появлениями двух последовательных событий
простейшего потока.

Функция распределения
показательного закона:

Графики плотности и
функции распределения показательного закона изображены на рисунке.

Вероятность попадания в
интервал

 непрерывной
случайной величины

, распределенной по показательному закону:

Числовые характеристики показательного (экспоненциального) распределения

Математическое ожидание случайной величины, распределенной по показательному закону:

Дисперсия случайной величины, распределенной по показательному закону:

Среднее квадратическое отклонение случайной величины,
распределенной по показательному закону:

Коэффициенты асимметрии и эксцесса
для показательного распределения:

Таким
образом, математическое ожидание и среднее квадратическое
отклонение экспоненциального распределения равны между собой.

Показательный закон
распределения играет большую роль в теории массового обслуживания и теории
надежности. Так, например, интервал времени

 между
двумя соседними событиями в простейшем потоке имеет показательное распределение
с параметром

 –
интенсивностью потока.

При решении задач, которые выдвигает практика, приходится
сталкиваться с различными распределениями непрерывных случайных величин.

Смежные темы решебника:

  • Непрерывная случайная величина
  • Нормальный закон распределения случайной величины
  • Равномерный закон распределения случайной величины

Примеры решения задач


Пример 1

Случайная величина

 задана функцией распределения

Найдите математическое
ожидание и среднее квадратическое отклонение этого
распределения.

Найдите вероятность того,
что случайная величина примет значение от 0,2 до 1.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Математическое
ожидание случайной величины, распределенной по показательному закону:

Среднее
квадратическое отлонение:

Вероятность того, что
случайная величина примет значение от 0,2 до 1

Ответ

.


Пример 2

На шоссе установлен контрольный пункт для
проверки технического состояния автомобилей. Найти математическое ожидание и
среднее квадратическое отклонение случайной величины T – время ожидания
очередной машины контролером, если поток машин простейший и время (в часах)
между прохождениями машин через контрольный пункт распределено по
показательному закону f(t)=5e-5t.

Указание: Время ожидания машины
контролером и время прохождения машин через контрольный пункт распределены
одинаково.

Решение

В нашем случае
параметр показательного распределения

Математическое
ожидание:

Дисперсия:

Среднее
квадратическое отклонение:

Ответ:


Пример 3

Постройте
интегральную и дифференциальную функции распределения случайной величины X.
Найдите математическое ожидание M(X), дисперсию D(X),
среднее квадратическое отклонение σ(X), моду xmod, медиану xmed , если известно, что
случайная величина X имеет показательное распределение с параметром λ=1.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Плотность
распределения случайной величины

, распределенной по
показательному закону:

Функция
распределения:

Построим
графики дифференциальной и интегральной функций распределения:

График дифференциальной функции распределения

График интегральной функции распределения

Математическое
ожидание показательно распределенной случайной величины

:

Дисперсия:

Среднее
квадратическое отклонение:

 найдем, исходя из условия: 


Пример 4

Случайная
величина

 распределена показательно с дисперсией 0,25.
Найти математическое ожидание и вероятность попадания

 в интервал (0,5;1).

Решение

Дисперсия
случайной величины, распределенной по показательному закону:

Математическое
ожидание случайной величины, распределенной по показательному закону:

Вероятность
попадания в интервал

 непрерывной случайной величины

, распределенной по
показательному закону:

В нашем
случае:

Ответ:

Задачи контрольных и самостоятельных работ


Задача 1

Время
безотказной работы двигателя автомобиля распределено по показательному закону.
Известно, что среднее время наработки двигателя на отказ между техническим
обслуживанием 100 ч. Определить вероятность безотказной работы двигателя за 80
ч.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 2

Среднее
время работы элемента, входящего в пожарно-техническое устройство, равно 1000
часов. Определить вероятность того, что элемент будет работать от 950 до 1150
часов, если время работы элемента распределено по показательному закону.


Задача 3

Вероятность
безотказной работы элемента распределена по экспоненциальному закону

f(t)=e-0.05t

Найти
вероятность того, что в результате испытания случайная величина попадет в
интервал (11;35). Найти характеристики данного распределения случайной
величины.


Задача 4

Непрерывная
случайная величина X задана интегральной функцией распределения

Найти
постоянную C, математическое ожидание случайной величины X,
вероятность попадания случайной величины в интервал [2;4].


Задача 5

Время
между отказами прибора распределено по показательному закону со средним
значением 25 часов. Определить математическое ожидание и дисперсию времени
безотказной работы автомобиля. Найти вероятность того, что очередной отказ
произойдет не позднее 15 часов.


Задача 6

Время
безотказной работы телевизора определенной модели описывается показательным (экспоненциальным)
законом распределения с постоянной λ. Что вероятнее, его безотказная работа в
промежутке времени [x1,x2]

 или [x3,x4]? Записать
функции f(x),F(x) и построить их графики.

λ=1/10, x1=3, x2=5, x3=4, x4=8

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 7

Испытывают
два независимо работающих элемента. Длительность времени t безотказной
работы первого элемента имеет показательное распределение с параметром 0,02,
второго -показательное распределение с параметром 0,06. Найдите вероятность
того, что за время длительностью t=6 ч откажет только один
элемент.


Задача 8

Среднее
время работы каждого из трех элементов, входящих в техническое устройство,
равно T=850 часов. Для безотказной работы устройства необходима безотказная
работа хотя бы одного из трех этих элементов. Определить вероятность, что
устройство будет работать от t1=750 до t2=820 часов, если время
работы каждого из трех элементов независимо и распределено по показательному
закону.


Задача 9

Время
устранения повреждения на канале связи T -случайная величина,
распределенная по закону f(t)=λe-λt (t≥0). Среднее время
восстановления канала — 10 минут. Определить вероятность того, что на
восстановление канала потребуется от 5 до 10 минут.


Задача 10

Дана плотность
распределения случайной величины X.

По какому
закону распределения случайная величина? Найти математическое ожидание,
дисперсию, функцию распределения?


Задача 11

Время
безотказной работы механизма подчинено показательному закону с плотностью
распределения вероятностей f(t)=0.04e-0.04t при t > 0 (t –
время в часах). Найти вероятность того, что механизм проработает безотказно не
менее 100 часов.


Задача 12

Длительность телефонного разговора
является случайной величиной, распределенной по показательному закону.
Известно, что средняя длительность телефонного разговора равна 9 минутам. Найти
вероятность того, что разговор будет длиться:

а) не более 5 минут.

б) более 5 минут.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.


Задача 13

Случайная величина ξ подчинена
показательному закону с параметром λ=5:

Найдите вероятность того, что
случайная величина ξ примет значение меньшее, чем ее математическое ожидание.


Задача 14

Случайная
величина ξ имеет плотность вероятностей (показательное распределение)

Найдите
вероятность P{ξ>Mξ}


Задача 15

Время T
(минут), затрачиваемое клиентами парикмахерской в ожидании своей очереди,
удовлетворяет показательному распределению с параметром λ=0,05. Какова
вероятность того, что время ожидания превысит 25 минут и каково среднее время
ожидания.


Задача 16

Время T (час),
необходимое на ремонт легкового автомобиля удовлетворяет показательному
распределению с параметром λ=0,2. Какова вероятность того, что время ремонта
одного автомобиля не превысит 6 часов, и сколько часов в среднем затрачивается
на ремонт одного автомобиля.


Задача 17

Время
ожидания у бензоколонки автозаправочной станции является случайной величиной X,
распределенной по показательному закону, со средним временем ожидания, равным t0. Найти вероятности
следующих событий:


Задача 18

Случайная
величина X задана показательным законом распределения и
числовыми значениями параметров M(X)=3 и σx=3.

Требуется:

1) найти
функцию плотности f(x).

2) найти
вероятность попадания СВ X в указанный интервал [a,b]=[2,4].


Задача 19

Случайная
величина ξ задана функцией распределения

Найдите
математическое ожидание и среднее квадратическое отклонение этого
распределения.


Задача 20

Случайная величина ξ распределена по
показательному закону с параметром λ=0,3. Найдите математическое ожидание и
среднее квадратическое отклонение этой случайной величины.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Определение.
Непрерывная
случайная величина Х имеет
показательный
(экспоненциальный)

закон
распределения
с параметром λ, если ее плотность
вероятности
f(x)
имеет вид:

(6.13)

Кривая распределения
f(x)
и график функции распределения F(x)
случайной величины Х
приведены соответственно на рис. 7.3 и
рис. 7.4.

Рис. 7.3 Рис. 7.4

Теорема.
Функция
распределения случайной величины Х,
распределенной по показательному
(экспоненциальному)
закону, есть

(6.14)

ее
математическое ожидание

,

(6.15)

а
дисперсия

.

(6.16)

Отсюда следует,
что для
случайной величины, распределенной по
показательному закону, математическое
ожидание равно среднему квадратическому
отклонению
,
т.е.

.

Вероятность
попадания в интервал [a;
b]
непрерывной случайной величины Х,
распределенной по показательному
закону, находится как

.

(6.17)

Пример 6.1.
Установлено, что время ремонта
железнодорожных вагонов есть случайная
величина Х,
распределенная по показательному
закону. Определить вероятность того,
что на ремонт вагона потребуется менее
7 дней, если среднее время ремонта вагонов
составляет 10 дней.

Решение.
По условию математическое ожидание
М(Х)
= 1/λ
= 10, откуда параметр λ
= 0,1. По формуле (6.17)
находим вероятность попадания случайной
величины Х
в интервал [0, 7]:

Р(0
< Х
< 7) = е-0,1·0
е-0,1·7
= 1 – е-0,7
≈ 0,503. ◄

Показательный
закон распределения играет большую
роль в теории массового обслуживания.
Так например, интервал времени между
двумя соседними событиями в простейшем
потоке имеет показательное распределение
с параметром λ
– интенсивностью потока.

Кроме того,
показательное распределение широко
применяется в теории надежности, одним
из основных понятий которой является
функция
надежности
.

6.5 Функция надежности

Будем называть
элементом некоторое устройство. Пусть
элемент начинает работать в момент
времени τ0
= 0, а по истечении времени τ
происходит отказ.

Обозначим через
Т
непрерывную случайную величину –
длительность времени безотказной работы
элемента. Если элемент проработал
безотказно (т.е. до наступления отказа)
время, меньшее чем τ,
то, следовательно, за время длительностью
τ
наступил отказ.

Таким образом,
интегральная функция

F(τ)
= P(T
< τ)

определяет
вероятность отказа за время длительностью
τ.
Следовательно, вероятность безотказной
работы за это же время, длительностью
τ,
т.е. вероятность противоположного
события Т
> τ,
равна

R(τ)
= P(T
> τ)
= 1 – F(τ).

Функцией надежности
R(τ),
называют функцию, определяющую вероятность
безотказной работы элемента за время
длительностью τ:

R(τ)
= P(T
> τ)
= eλτ,

(6.18)

где
λ – интенсивность отказов.

Широкое использование
показательного закона распределения
обусловлено тем, что только он обладает
следующим важным свойством:

Если промежуток
времени Т, распределенный по показательному
закону, уже длился некоторое время
τ,
то это никак не влияет на закон
распределения оставшейся части Т
1
= Т – τ
промежутка, т.е. закон распределения Т
1
остается
таким же, как и всего промежутка Т
.

Пример 6.2.
Время безотказной работы устройства
распределено по показательному закону
f(t)
= 0,02e-0,02t
при t
≥ 0 (t
– время в часах). Какова вероятность
того, что устройство проработает
безотказно 50 часов?

Решение.
По условию постоянная интенсивность
отказов λ
= 0,02. Используя формулу (6.18),
получаем:

R(50)
= e-0,02·50
= e-1
≈ 0,368. ◄

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Информация о материале
Категория: Глава 13. Показательное распределение

Опубликовано: 14 сентября 2018

Просмотров: 9374

Глава 13. Задача 4. Время безотказной работы элемента распределено по показательному закону (f(x) = 0,01e^{-0,01t})  ((t > 0)), где (t) — время, ч. Найти вероятность того, что элемент проработает безотказно 100 ч.

Решение.

Показательным законом надежности называют функцию надежности, определяемую равенством

[R(t) = e^{-lambda t}, qquad (*)]

где (lambda) — интенсивность отказов.

Эта формула позволяет найти вероятность безотказной работы элемента на интервале времени длительностью (t), если время безотказной работы имеет, показательное распределение.

По условию задачи, постоянная интенсивность отказов (lambda = 0,01).

Воспользуемся формулой (*):

[R(100) = e^{-0,01cdot 100} = e^{-1} approx 0,37.]

Ответ. (R(100) = 0,37).

Автор Сообщение

Заголовок сообщения: Задачка показательное распределение

СообщениеДобавлено: 29 май 2013, 23:22 

Не в сети
Начинающий


Зарегистрирован:
29 май 2013, 23:17
Сообщений: 5
Cпасибо сказано: 2
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации

Время Т безотказной работы радиотехнической системы распределено по показательному закону с параметром 0.02.Найдите среднее время безотказной работы и вероятность безотказной работы за 80 ч.

Вернуться к началу

Профиль  

Cпасибо сказано 

Rocki

Заголовок сообщения: Re: Задачка показательное распределение

СообщениеДобавлено: 30 май 2013, 10:28 

А можно по подробнее пока нечего не понел :Yahoo!:

Вернуться к началу

Профиль  

Cпасибо сказано 

Rocki

Заголовок сообщения: Re: Задачка показательное распределение

СообщениеДобавлено: 30 май 2013, 10:41 

В принципе я понял первый ответ это среднее время безотказной работы.А второй вероятность безотказной работы за 80 ч.
Можно второе по подробнее.

Вернуться к началу

Профиль  

Cпасибо сказано 

Rocki

Заголовок сообщения: Re: Задачка показательное распределение

СообщениеДобавлено: 31 май 2013, 00:56 

Вернуться к началу

Профиль  

Cпасибо сказано 

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,627
  • гуманитарные
    33,648
  • юридические
    17,917
  • школьный раздел
    611,615
  • разное
    16,897

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Like this post? Please share to your friends:
  • Все они за исключением двух относятся к понятию социальный институт семья бизнес наука
  • Все страховые компании могут получать бланки осаго в рса без ограничений верно или нет
  • Всеволожский городской суд ленинградской области официальный сайт реквизиты госпошлины
  • Всегда можно увеличить стоимость компании добавив кредитное плечо верно ли утверждение
  • Втб бизнес онлайн скачать приложение для андроид бесплатно на русском последняя версия