Светило науки — 2131 ответ — 157751 помощь
1-ый токарь 2-ой токарь 3-ий токарь
Производит-ть, дет./ч. 6 5 х
Время работы до того,
как 3-ий догонит 2-го, ч. у+2 у+1 у
К-во изготовл. деталей
за то время пока 3-ий
догоняет 2-го 6(у+2) 5(у+1) ху или 5(у+1)
Время работы до того,
как 3-ий догонит 1-го, ч. у+2+2=у+4 у+1+2=у+3 у+2
К-во изготовл. деталей
за то время пока 3-ий
догоняет 1-го 6(у+4) 5(у+3) х(у+2) или 6(у+4)
Составим и решим систему уравнений:
ху=5(у+1)
х(у+2)=6(у+4)
х=5(у+1)/у
(у+2)*5(у+1)/у=6(у+4)
х=5(у+1)/у
5(у+2)(у+1)=6у(у+4)
х=5(у+1)/у
5у^2+10у+5y+10=6у^2+24у
х=5(у+1)/у
6у^2+24у-5у^2-15y-10=0
х=5(у+1)/у
у^2+9у-10=0
х=5(у+1)/у
по теореме Виета:
у1=1 у2=-10 (не подходит, так как время не может быть отрицательным)
х=5(1+1)/1
у=1
х=10
у=1
Ответ: производительность труда третьего токаря — 10 деталей в час.
1-ый токарь 2-ой токарь 3-ий токарь
Производит-ть, дет./ч. 6 5 х
Время работы до того,
как 3-ий догонит 2-го, ч. у+2 у+1 у
К-во изготовл. деталей
за то время пока 3-ий
догоняет 2-го 6(у+2) 5(у+1) ху или 5(у+1)
Время работы до того,
как 3-ий догонит 1-го, ч. у+2+2=у+4 у+1+2=у+3 у+2
К-во изготовл. деталей
за то время пока 3-ий
настигает 1-го 6(у+4) 5(у+3) х(у+2) либо 6(у+4)
Составим и решим систему уравнений:
ху=5(у+1)
х(у+2)=6(у+4)
х=5(у+1)/у
(у+2)*5(у+1)/у=6(у+4)
х=5(у+1)/у
5(у+2)(у+1)=6у(у+4)
х=5(у+1)/у
5у^2+10у+5y+10=6у^2+24у
х=5(у+1)/у
6у^2+24у-5у^2-15y-10=0
х=5(у+1)/у
у^2+9у-10=0
х=5(у+1)/у
по теореме Виета:
у1=1 у2=-10 (не подходит, так как время не может быть отрицательным)
х=5(1+1)/1
у=1
х=10
у=1
Ответ: производительность труда третьего токаря — 10 деталей в час.
1-ый токарь 2-ой токарь 3-ий токарь
Производит-ть, дет./ч. 6 5 х
Время работы до того,
как 3-ий догонит 2-го, ч. у+2 у+1 у
К-во изготовл. деталей
за то время пока 3-ий
догоняет 2-го 6(у+2) 5(у+1) ху или 5(у+1)
Время работы до того,
как 3-ий догонит 1-го, ч. у+2+2=у+4 у+1+2=у+3 у+2
К-во изготовл. деталей
за то время пока 3-ий
догоняет 1-го 6(у+4) 5(у+3) х(у+2) или 6(у+4)
Составим и решим систему уравнений:
ху=5(у+1)
х(у+2)=6(у+4)
х=5(у+1)/у
(у+2)*5(у+1)/у=6(у+4)
х=5(у+1)/у
5(у+2)(у+1)=6у(у+4)
х=5(у+1)/у
5у^2+10у+5y+10=6у^2+24у
х=5(у+1)/у
6у^2+24у-5у^2-15y-10=0
х=5(у+1)/у
у^2+9у-10=0
х=5(у+1)/у
по теореме Виета:
у1=1 у2=-10 (не подходит, так как время не может быть отрицательным)
х=5(1+1)/1
у=1
х=10
у=1
Ответ: производительность труда третьего токаря — 10 деталей в час.
Инфоурок
›
Алгебра
›Презентации›Презентация по математике на тему «Решение задач на совместную работу при подготовке обучающихся к ОГЭ»
Презентация по математике на тему «Решение задач на совместную работу при подготовке обучающихся к ОГЭ»
Скачать материал
Скачать материал
- Сейчас обучается 20 человек из 14 регионов
- Сейчас обучается 45 человек из 26 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
Решение задач на совместную
работу
при подготовке
учащихся 9-х классов к ГИА..
-
2 слайд
Рекомендации к решению задач:
Что необходимо знать?
1. Объём, выполняемой работы! (A)
3. Производительность! (N)
2. Время работы! (t)
Что необходимо делать? -
3 слайд
Задачу прочти
Немного помолчи
Про себя повтори
Ещё раз прочти
Нет объёма работы, за 1 прими
Данные в таблицу занеси
Уравнение запиши
Уравнение реши!Что необходимо делать?
-
4 слайд
Мастер, работая самостоятельно, может изго-
товить партию из 200 деталей за некоторое время. Ученик за это же время может изготовить только половину всех деталей. Работая вместе, они могут изготовить всю партию деталей за 4 ч. За какое время мастер может изготовить все детали, работая самостоятельно?
Задача 1.
мастерученик
Время
(t)
х
200
Объем
работы
100
Производительность
Объем работы = производительность⋅ время.
х
4
вместе
200
Составим и решимуравнение.
⋅
=
Ответ: 6 часов. -
5 слайд
Саша и Маша решают задачи. Саша может решить 20 задач за то время, за которое Маша может решить в 2 раза меньше задач. Саша и Маша вместе могут решить 20 этих задач за 2 ч. За сколько часов Саша самостоятельно может решить 20 задач?
Задача 1/1.
CашаМаша
t
х
20
А
10
N
Объем работы = производительность⋅ время.
х
2
вместе
20
Составим и решимуравнение.
Ответ: 3 часов. -
6 слайд
Ученик, работая самостоятельно, может поштукатурить всю стену площадью 10 м2 за то время, за которое мастер может поштукатурить две таких стены. Мастер и ученик, работая вместе, могут поштукатурить всю стену за 6 ч. За какое время ученик может поштукатурить всю стену, работая самостоятельно?
Задача 1/2.
ученик
мастер
t
х
10
А
20
N
Объем работы = производительность⋅ время.
х
6
вместе
10
Составим и решимуравнение.
Ответ: 18 часов. -
7 слайд
Токарь четвёртого разряда и его ученик за час вместе изготавливают 50 деталей. Ученику для изгото-
вления 50 деталей требуется времени на 2 часа больше, чем требуется токарю для изготовления 120 деталей. Сколько деталей в час изготовляет токарь?
Задача 1/3.
токарьученик
N
х
120
A
50
t
Составим и решим уравнение.
Ответ: 40 деталей в час.
вместе
50
х+2
5х2 – 7х – 24 = 0
х = 3
=3
N = 40 -
8 слайд
Один мастер может выполнить заказ за 12 часов, а другой – за 18 часов. За сколько часов выполнят заказ эти мастера, работая вместе?
Задача 2.
мастерученик
t
12
1
А
1
N
Объем работы = производительность⋅ время.
18
х
вместе
1
⋅
=
Ответ: 7,2 часа.
Составим и решим
уравнение. -
9 слайд
Первая труба и вторая, работая вместе, наполняют бассейн за 36 часов, первая и третья – за 30 часов, вторая и третья – за 20 часов. За сколько часов наполнят бассейн три трубы, работая вместе?
Задача 2/1.
1 т2 т
х
1
1
Объем работы = производительность⋅ время.
у
z
Вместе
1 и 2
1
=
Ответ: 18 часов.
3 т
+
36
1
Вместе
1 и 3
1+
Вместе
2 и 3
+
130
20
⋅36=
+
1
+
⋅30=
1
+
⋅20=
1
А
N
t -
10 слайд
Токари выходят на работу с интервалом в 1 час производительность труда первого токаря равна шести деталям в час, а второго – пяти деталям в час. Третий токарь догоняет второго по числу изготовленных деталей, а ешё через 2 часа догоняет первого. Какова производительность труда третьего токаря?
Задача 5(419).
1 т2 т
х
3 т
6
5
Пусть третий токарь
догоняет второго по числу
деталей через t часовСоставим и решим систему уравнений
N
t1
t+1
А1 (Кол-во
деталей.)
х⋅t
5(t+1)=хt
Получаем первое уравнение.t +2
А2 (Кол-во
деталей)
x(t +2)
t+4
6(t+4)
Получаем второе уравнение.6(t+4)=х(t+2)
5(t+1)
t
t2
2х2 – 29х + 90 = 0
Ответ: 10 деталей в час
Краткое описание документа:
Задания,которые представлены в презентации составленные автором согласно теории по теме «Решение задач на совместную работу» в пределах КИМ для учащихся 9-11 классов, предназначены для проверки уровня знаний, умений и навыков учащихся по данной теме и могут помочь выпускникам при подготовке к ГИА и ЕГЭ. При решении заданий необходимо хорошо знать алгоритмы решения задач на совместную работу. В большинстве случаев задачи на совместную работу становятся нагляднее, если при их решении использовать вспомогательные таблицы.
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 172 439 материалов в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 11.06.2015
- 1405
- 1
- 11.06.2015
- 750
- 0
- 11.06.2015
- 819
- 6
- 11.06.2015
- 2079
- 0
Рейтинг:
5 из 5
- 11.06.2015
- 9751
- 162
- 11.06.2015
- 740
- 1
Рейтинг:
4 из 5
- 11.06.2015
- 10908
- 30
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
-
Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»
-
Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»
-
Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»
-
Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»
-
Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»
-
Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»
-
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
-
Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»
-
Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»
-
Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»
-
Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»
-
Скачать материал
-
11.06.2015
5169
-
PPTX
1.6 мбайт -
85
скачиваний -
Рейтинг:
2 из 5 -
Оцените материал:
-
-
Настоящий материал опубликован пользователем Мухамадеева Ирина Равилевна. Инфоурок является
информационным посредником и предоставляет пользователям возможность размещать на сайте
методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайтЕсли Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
сайта, Вы можете оставить жалобу на материал.Удалить материал
-
- На сайте: 7 лет и 9 месяцев
- Подписчики: 0
- Всего просмотров: 8165
-
Всего материалов:
3
Слайд 1
Краснодарский край г.Армавир МБОУ – СОШ №8 учитель Черноус Ольга Шамильевна.
Слайд 2
Что необходимо знать? 1. Объём, выполняемой работы! (A) 3 . Производительность! (N) 2 . Время работы! (t) Что необходимо делать?
Слайд 3
Задачу прочти Немного помолчи Про себя повтори Ещё раз прочти Нет объёма работы, за 1 прими Данные в таблицу занеси Уравнение запиши Уравнение реши! Что необходимо делать?
Слайд 4
Мастер, работая самостоятельно, может изго- товить партию из 200 деталей за некоторое время. Ученик за это же время может изготовить только половину всех деталей. Работая вместе, они могут изготовить всю партию деталей за 4 ч. За какое время мастер может изготовить все детали, работая самостоятельно? мастер ученик Время ( t) х 200 Объем работы 100 Производительность Объем работы = производительность ⋅ время . х 4 вместе 200 Составим и решим уравнение. ⋅ = Ответ: 6 часов.
Слайд 5
Саша и Маша решают задачи. Саша может решить 20 задач за то время, за которое Маша может решить в 2 раза меньше задач. Саша и Маша вместе могут решить 20 этих задач за 2 ч. За сколько часов Саша самостоятельно может решить 20 задач? C аша Маша t х 20 А 10 N Объем работы = производительность ⋅ время . х 2 вместе 20 Составим и решим уравнение. Ответ: 3 часов.
Слайд 6
Ученик, работая самостоятельно, может поштукатурить всю стену площадью 10 м 2 за то время, за которое мастер может поштукатурить две таких стены. Мастер и ученик, работая вместе, могут поштукатурить всю стену за 6 ч. За какое время ученик может поштукатурить всю стену, работая самостоятельно? ученик мастер t х 10 А 20 N Объем работы = производительность ⋅ время . х 6 вместе 10 Составим и решим уравнение. Ответ: 18 часов.
Слайд 7
Токарь четвёртого разряда и его ученик за час вместе изготавливают 50 деталей. Ученику для изгото- вления 50 деталей требуется времени на 2 часа больше, чем требуется токарю для изготовления 120 деталей. Сколько деталей в час изготовляет токарь? токарь ученик N х 120 A 50 t Составим и решим уравнение. Ответ: 40 деталей в час. вместе 50 х+2 5х 2 – 7х – 24 = 0 х = 3 =3 N = 40
Слайд 8
Один мастер может выполнить заказ за 12 часов, а другой – за 18 часов. За сколько часов выполнят заказ эти мастера, работая вместе? мастер ученик t 12 1 А 1 N Объем работы = производительность ⋅ время . 18 х вместе 1 ⋅ = Ответ: 7,2 часа. Составим и решим уравнение.
Слайд 9
Первая труба и вторая, работая вместе, наполняют бассейн за 36 часов, первая и третья – за 30 часов, вторая и третья – за 20 часов. За сколько часов наполнят бассейн три трубы, работая вместе? 1 т 2 т х 1 1 Объем работы = производительность ⋅ время . у z Вместе 1 и 2 1 = Ответ: 18 часов. 3 т + 36 1 Вместе 1 и 3 1 + Вместе 2 и 3 + 1 3 0 20 ⋅ 36 = + 1 + ⋅ 3 0= 1 + ⋅ 20= 1 А N t
Слайд 10
Токари выходят на работу с интервалом в 1 час производительность труда первого токаря равна шести деталям в час, а второго – пяти деталям в час. Третий токарь догоняет второго по числу изготовленных деталей, а ешё через 2 часа догоняет первого. Какова производительность труда третьего токаря? 1 т 2 т х 3 т 6 5 Пусть третий токарь догоняет второго по числу деталей через t часов Составим и решим систему уравнений N t 1 t +1 А 1 (Кол-во деталей.) х⋅ t 5(t +1 ) =х t Получаем первое уравнение. t +2 А 2 (Кол-во деталей) x(t +2) t+4 6(t+4) Получаем второе уравнение. 6 (t +4 ) =х( t +2) 5( t +1) t t 2 2х 2 – 29х + 90 = 0 Ответ: 10 деталей в час
Токари выходят на работу с интервалом в 1 час.
Производительность труда первого токаря равна 6 деталям в час , а второго — 5 деталям в час .
Третий токарь догоняет второго по числу изготовленных деталей , а еще через два часа догоняет первого.
Какова производительность труда третьего токаря.
Ответ должен получиться 10 деталей в час.
На этой странице сайта, в категории Алгебра размещен ответ на вопрос
Токари выходят на работу с интервалом в 1 час?. По уровню сложности вопрос рассчитан на учащихся
5 — 9 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.
1-ый токарь 2-ой токарь 3-ий токарь
Производит-ть, дет./ч. 6 5 х
Время работы до того,
как 3-ий догонит 2-го, ч. у+2 у+1 у
К-во изготовл. деталей
за то время пока 3-ий
догоняет 2-го 6(у+2) 5(у+1) ху или 5(у+1)
Время работы до того,
как 3-ий догонит 1-го, ч. у+2+2=у+4 у+1+2=у+3 у+2
К-во изготовл. деталей
за то время пока 3-ий
догоняет 1-го 6(у+4) 5(у+3) х(у+2) или 6(у+4)
Составим и решим систему уравнений:
ху=5(у+1)
х(у+2)=6(у+4)
х=5(у+1)/у
(у+2)*5(у+1)/у=6(у+4)
х=5(у+1)/у
5(у+2)(у+1)=6у(у+4)
х=5(у+1)/у
5у^2+10у+5y+10=6у^2+24у
х=5(у+1)/у
6у^2+24у-5у^2-15y-10=0
х=5(у+1)/у
у^2+9у-10=0
х=5(у+1)/у
по теореме Виета:
у1=1 у2=-10 (не подходит, так как время не может быть отрицательным)
х=5(1+1)/1
у=1
х=10
у=1
Ответ: производительность труда третьего токаря — 10 деталей в час.