Работа совершаемая источником электроэнергии в единицу времени

Макеты страниц

При прохождении тока, т. е. при упорядоченном движении носителей заряда в проводнике, действующее на них электрическое поле, определяемое приложенным к концам проводника напряжением, совершает работу. Эту работу обычно называют работой электрического тока.

Работа сил электрического поля при перемещении носителей заряда равна произведению переносимого заряда на разность потенциалов между теми точками, где перемещается заряд:

При постоянном токе — время, в течение которого переносится заряд Поэтому работа постоянного тока за время на участке цепи, на концах которого поддерживается напряжение определяется соотношением

Мощность Р электрического тока, определяемая работой, совершаемой за единицу времени, равна

Электрический ток, совершая работу, может раскалять нить электролампы, вращать якорь электродвигателя, плавить металлы, вызывать химические превращения, заряжать аккумулятор и т. д. Во всех этих случаях работа тока определяет меру превращения электрической энергии в другие формы — внутреннюю энергию теплового движения, механическую энергию и т. д.

Работа электрического тока измеряется в тех же единицах, что и механическая работа. Это в системе СГСЭ и 1 Дж в

Мощность измеряется в ваттах: . Часто используются кратные единицы (киловатт) (мегаватт) Вт. Для работы тока часто используется внесистемная единица (киловатт-час) — работа, совершаемая за 1 час при развиваемой мощности

Закон Джоуля-Ленца. Прохождение электрического тока через проводник, обладающий сопротивлением, всеща сопровождается выделением теплоты. Количество выделившейся за время теплоты определяется законом Джоуля—Ленца:

В случае однородного участка, коща формулы (2) и (4) совпадают, т. е. количество выделяющейся теплоты равно работе тока, и работу тока можно выразить любым из эквивалентных способов:

В однородном участке цепи, например в резисторе, работа тока сводится только к выделению теплоты.

В качестве примера рассмотрим какой-нибудь электронагревательный прибор, отдающий выделяющуюся теплоту в окружающую среду. Скорость теплопередачи, т. е. количества теплоты, отдаваемой нагретым элементом в единицу времени, пропорциональна разности температур между нацзетым телом и окружающей средой:

Коэффициент к зависит от свойств тела (площади поверхности, размеров и формы). Будем считать его значение известным. Выделяющуюся джоулеву теплоту можно подсчитать по любой из формул (5). Поскольку обычно нагревательный прибор включается в сеть с заданным напряжением, то удобно воспользоваться выражением

Сразу после включения выделяющаяся джоулева теплота превосходит отдаваемую окружающей среде, так как происходит нагревание самого прибора. В конце концов устанавливается такая его температура Т, при которой Р и сравниваются наступает стационарное состояние, в котором разность температур прибора и окружающей среды уже не меняется.

Если сопротивление нагреваемого током элемента не зависит от температуры, то, приравнивая значения Р и немедленно получаем выражение для установившейся разности температур:

Однако в действительности, как правило, сопротивление зависит от температуры. Для металлической проволоки эту зависимость можно считать линейной (см. § 10):

где с хорошей точностью под можно понимать сопротивление при температуре окружающей среды. Если учитывать эту зависимость сопротивления от температуры, то, приравнивая Р и приходим уже к квадратному уравнению для

Имеющий физический смысл корень этого уравнения можно представить в следующем виде:

В условиях, когда мало, т. е. превышение температуры нагревательного элемента прибора над окружающей средой невелико, второй

член в подкоренном выражении мал по сравнению с единицей и можно воспользоваться приближенной формулой При этом получаем прежний результат

В другом предельном случае больших (как, например, у лампочки накаливания, температура нити которой составляет несколько тысяч градусов), можно, наоборот, в подкоренном выражении пренебречь единицей по сравнению со вторым членом. При этом для приближенно получаем

— разность температур теперь пропорциональна не квадрату, а первой степени приложенного напряжения.

В неоднородных участках цепи, где ток определяется формулой выделяющаяся теплота не равна работе тока. Это означает, что протекание тока в таком участке сопровождается не только выделением теплоты, но и другими процессами, связанными с превращением энергии.

Зарядка аккумулятора. В качестве примера энергетических превращений в неоднородной цепи рассмотрим зарядку аккумулятора. Не вдаваясь в детали происходящих в аккумуляторе процессов, а только учитывая, что при зарядке все химические процессы внутри него идут «вспять», легко сообразить, что ток идет в направлении, противоположном току при разрядке, когда аккумулятор является источником питания для внешней цепи. Поэтому аккумулятор включается в цепь так, как показано на рис. 86, а ток в цепи идет в направлении, указанном стрелкой. Так как ЭДС аккумулятора (сумма скачков потенциала внутри него) понижает потенциал в цепи в направлении протекания тока, то, в соответствии с законом Ома для неоднородного участка, ток в цепи равен

Рис. 86. Схема включения аккумулятора на зарядку

В этой формуле — внутреннее сопротивление аккумулятора, а сопротивление включено в цепь для регулировки зарядного тока. Легко видеть, что ток будет положительным и, следовательно, пойдет в указанном направлении только при условии, что подаваемое напряжение больше электродвижущей силы аккумулятора . Только при выполнении этого условия и можно зарядить аккумулятор.

Работа, совершаемая зарядной станцией (т. е. внешним источником напряжения в единицу времени, т. е. работа тока на всем рассматриваемом участке, равна На всех сопротивлениях,

включая внутреннее сопротивление аккумулятора, в единицу времени выделяется джоулева теплота, равная . Кроме зарядки аккумулятора и выделения теплоты других энергетических превращений в рассматриваемой цепи не происходит. Поэтому на основании закона сохранения энергии можно утверждать, что

где Рзар — мощность, идущая непосредственно на зарядку аккумулятора. Подставляя в (7) выражение для силы тока (6), получаем

Таким образом, при зарядке аккумулятор в единицу времени запасает энергию, равную 14. Разумеется, этого результата можно было ожидать из элементарных соображений: ведь процессы в аккумуляторе считаются обратимыми, а при разрядке аккумулятор развивает мощность

Обратим внимание, что, считая известными выражения для полной работы тока, для джоулевой теплоты и для работы зарядки аккумулятора, можно с помощью закона сохранения энергии получить выражение (6) для тока в цепи. Для этого нужно просто подставить в Это значит, что закон Ома для неоднородного участка можно получить как следствие закона сохранения энергии.

Работа источника тока. Источник тока — это устройство, поддерживающее разность потенциалов на концах подключенной к нему электрической цепи. Это происходит благодаря действию сторонних сил — сил неэлектростатической природы. Какие энергетические превращения при этом происходят?

Как мы видели, ЭДС источника равна сумме напряжений во внешнем и внутреннем участках цепи:

Домножим обе части этого равенства на заряд проходящий по цепи за время В левой части получившегося равенства будет стоять сумма работ электрического тока во внешнем и во внутреннем участках цепи. Справа будет стоять произведение

Электрический ток совершает работу за счет действия источника, т. е. сторонних сил. По закону сохранения энергии работа тока в цепи равна работе, совершаемой за это же время источником тока, т. е. работе действующих в нем сторонних сил.

Определение ЭДС. Итак, работа источника тока при перемещении по цепи заряда равна Поэтому электродвижущей силе источника можно дать и такое определение: электродвижущей силой называется величина, равная отношению работы Лстор сторонних сил

при перемещении по цепи заряда к этому заряду:

Поскольку работа источника тока равна то развиваемая им мощность

Мощность и КПД источника тока. Выясним, каким должно быть сопротивление нагрузки для того, чтобы получить максимальную силу тока в цепи, максимальную полезную мощность, максимальный коэффициент полезного действия.

Ток в цепи (рис. 87) определяется законом Ома: Поэтому полная мощность Р, развиваемая источником тока, равна . Полезная мощность т. е. мощность, выделяющаяся на нагрузке дается соотношением

Коэффициент полезного действия источника в этой цепи, определяемый как отношение полезной мощности к полной, зависит от сопротивления нагрузки:

Исследуем полученные выражения. Полная мощность Р и ток в цепи I различаются постоянным множителем поэтому их зависимость от сопротивления нагрузки одинакова (кривая 1 на рис. 88).

Рис. 87. К исследованию условий работы источника тока

Рис. 88. Зависимость мощности и КПД источника тока от сопротивления нагрузки

Максимальным значение этих величин будет при т. е. при коротком замыкании источника. Как видно из формул (12) и (13), при этом равны нулю полезная мощность и коэффициент полезного действия При полная мощность и ток равны половине своего максимального значения, коэффициент полезного действия равен 0,5, а полезная мощность достигает своего максимального значения,

равного половине мощности Р при этой нагрузке. Для того чтобы убедиться, что при равенстве сопротивления нагрузки и внутреннего сопротивления источника тока полезная мощность максимальна, преобразуем правую часть выражения (12) следующим образом:

Полезная мощность будет максимальной, когда знаменатель правой части выражения (14) минимален. Преобразуем знаменатель:

Функция (15) достигает минимума тогда, когда выражение в скобках равно нулю, т. е. при Этот результат можно, разумеется, получить, приравнивая нулю производную по знаменателя правой части выражения (14).

При неограниченном увеличении сопротивления нагрузки как полная, так и полезная мощность стремится к нулю (кривая 2), а коэффициент полезного действия — к единице (кривая 3).

Из рис. 87 видно, что требования получения максимального тока в цепи, максимальной полезной мощности и максимального КПД противоречивы. Для получения возможно большего тока сопротивление нагрузки должно быть малым по сравнению с внутренним сопротивлением источника, но при этом близки к нулю полезная мощность и КПД: почти вся совершаемая источником тока работа идет на выделение теплоты на внутреннем сопротивлении Чтобы получить от данного источника тока максимальную полезную мощность, следует взять нагрузку с сопротивлением равным внутреннему сопротивлению источника. Значение максимальной полезной мощности но коэффициент полезного действия при этом равен всего лишь 0,5.

Любую полезную мощность меньшую максимальной, можно получить, как свидетельствует ход кривой 2 на рис. 88, при двух значениях сопротивления нагрузки. Практически для получения заданной полезной мощности следует выбирать нагрузку с большим сопротивлением так как КПД при этом выше. Для получения КПД, близкого к единице, следует брать нагрузку с сопротивлением, много большим внутреннего сопротивления источника тока, но при этом выделяющаяся мощность .

• Работа каких сил имеется в виду, когда говорят о работе, совершаемой электрическим током?

• В каких случаях работа электрического тока не равна выделяющейся в цепи джоулевой теплоте

• Для зарядки аккумулятора с ЭДС его включили в сеть с постоянным напряжением Какая доля потребляемой от сети энергии запасается в аккумуляторе?

• Каким образом работа сторонних сил связана с ЭДС источника тока? Аргументируйте свой ответ.

• Какой должна быть нагрузка, чтобы источник тока развивал максимальную полезную мощность? Каким при этом будет его КПД?

• Почему условия получения максимальной полезной мощности и максимального КПД от данного источника тока противоречат друг другу?

• Покажите, что два значения сопротивления нагрузки и при которых в нагрузке выделяется одинаковая джоулева теплота, связаны соотношением где — внутреннее сопротивление источника тока.

• Постройте графики зависимости мощности источника тока, полезной мощности и КПД от силы тока I в цепи.

Поле сторонних сил. Работа, совершаемая электрическим током при прохождении заряда по всей цепи, равна работе действующих в источнике сторонних сил. Поэтому ЭДС можно выразить через эти силы.

Введем новую величину Естор, которую назовем напряженностью поля сторонних сил. Это сила, действующая на единичный положительный заряд, обусловлена любыми причинами, кроме электростатического поля. Тогда полная сила, действующая на заряд, будет складываться из электростатической силы и сторонней силы:

Рассмотрим замкнутую цепь и рассчитаем полную работу, совершаемую всеми действующими на заряд силами при его перемещении по всей цепи. Работа электростатических сил на замкнутом контуре равна нулю, так как эти силы — потенциальные. Поэтому полная работа на замкнутом контуре равна работе только сторонних сил. Именно эта работа и определяет ЭДС источника тока.

Обратим внимание на кажущееся противоречие. Работа тока — это по определению работа сил электрического поля. В то же время, как мы видели, работа тока во всей цепи равна работе источника, т. е. работе сторонних сил. Но как мы только что выяснили, работа электростатического поля равна нулю. Как все это согласовать?

Дело в том, что, говоря о работе электрического тока, мы имели в виду работу электрических сил не на всем замкнутом пути, а только на тех участках цепи, где заряды движутся под действием электрических сил. Мы не включали работу электрических сил в местах скачков потенциала (где и действуют

сторонние силы), т. е. в местах, где электрическое поле направлено противоположно движению положительных зарядов. Именно в этих местах внутри источника тока движение зарядов против сил электрического поля обусловлено действием сторонних сил. Если учесть работу электрических сил и в этих местах, то полная их работа действительно будет равна нулю.

Здесь можно привести следующую механическую аналогию. Лыжник спускается с горы и, сделав круг, возвращается к ее подножию, а затем с помощью подъемника снова поднимается на вершину. Аналогом потенциального электростатического поля здесь является поле силы тяжести. Роль сторонних сил играют силы, поднимающие его наверх в подъемнике. Очевидно, что полная работа силы тяжести на всем замкнутом пути равна нулю. Однако в данном случае она не представляет интереса. Важна лишь та работа сил тяжести, что совершается при движении лыжника от вершины горы до ее основания. Эта работа как раз и равна работе «сторонних» сил, действующих на лыжника в подъемнике.

Работа и теплота в произвольной цепи. В неоднородном участке цепи, содержащем источник с ЭДС и внутренним сопротивлением когда , для работы тока А, работы источника и выделяющейся теплоты имеем

Выделяющаяся теплота равна сумме работы тока и работы источника:

Подчеркнем, что эти формулы справедливы во всех случаях, независимо от того, идет ли ток через источник в «естественном» направлении, когда он отдает энергию во внешнюю цепь, или в противоположном, как это бывает при зарядке аккумулятора, когда он потребляет энергию (в этом случае I и Ч имеют противоположные знаки и Лист При этом теплота окажется во всех случаях положительной.

Как связаны между собой работа сторонних сил и работа сил электрического поля при переносе заряда вдоль всей замкнутой цепи?

Поясните аналогию между работой электрических и сторонних сил и работой силы тяжести и «подъемной» силы при катании лыжника на горе с подъемником.

1

Оглавление

  • Введение
  • I. ЭЛЕКТРОСТАТИКА
  • § 1. Электрический заряд. Закон Кулона
  • § 2. Электрическое поле. Напряженность поля
  • § 3. Теорема Гаусса
  • § 4. Потенциал электростатического поля. Энергия системы зарядов
  • § 5. Расчет электрических полей
  • § 6. Проводники в электрическом поле
  • § 7. Силы в электростатическом поле
  • § 8. Конденсаторы. Электроемкость
  • § 9. Энергия электрического поля
  • II. ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
  • § 10. Характеристики электрического тока. Закон Ома
  • § 11. Соединение проводников в электрические цепи
  • § 12. Закон Ома для неоднородной цепи
  • § 13. Расчет цепей постоянного тока
  • § 14. Работа и мощность постоянного тока
  • § 15. Магнитное поле постоянного тока
  • § 16. Действие магнитного поля на движущиеся заряды
  • III. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
  • § 17. Явление электромагнитной индукции
  • § 18. Электрические машины постоянного тока
  • § 19. Энергия магнитного поля
  • § 20. Основы теории электромагнитного поля
  • § 21. Квазистационарные явления в электрических цепях
  • IV. ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
  • § 22. Цепи переменного тока. Закон Ома
  • § 23. Работа и мощность переменного тока. Передача электроэнергии
  • § 24. Трехфазный ток. Электрические машины переменного тока
  • V. ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ
  • § 25. Колебательный контур
  • § 26. Вынужденные колебания в контуре. Резонанс
  • § 27. Незатухающие электромагнитные колебания
  • § 28. Электромагнитные волны
  • § 29. Свойства и применения электромагнитных волн
  • VI. ОПТИКА
  • § 30. Свет как электромагнитные волны. Интерференция
  • § 31. Дифракция света
  • § 32. Спектральные приборы. Дифракционная решетка
  • § 33. Протяженные источники света
  • § 34. Интерференция немонохроматического света
  • § 35. Физические принципы голографии
  • § 36. Геометрическая оптика
  • § 37. Оптические приборы, формирующие изображение

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.

зависимость.svg

Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:

q=I⋅t

.

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:

A=U⋅q

.

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:

A=U⋅I⋅t

.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда

Единицы измерения величин:

работа электрического тока ([A]=1) Дж;

напряжение на участке цепи ([U]=1) В;

сила тока, проходящего по участку ([I]=1) А;

время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

в_пример.svgpower-8191WKS.jpg

Рис. (3). Схема и часы для измерения

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени:

N = Аt

.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,

A=U⋅I⋅t

, разделить на время.

Мощность электрического тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I

. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока:

P=U⋅I

.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

зависимость1.svg

Рис. (5). Зависимость между мощностью, напряжением и силой тока

За единицу мощности принят ватт: (1) Вт = (1) Дж/с.

Из формулы

P=U⋅I

следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

в_пример.svg

Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт

.

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.png Jauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png 

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Рис. (9). Маркировка

В таблице дана мощность, потребляемая различными приборами и устройствами:

Таблица (1). Мощность различных приборов

Название

Рисунок

Мощность

 Калькулятор

441.jpg

(0,001) Вт

 Лампы дневного света

lampy-dnevnogo-sveta-potolochnye1.jpg

(15 — 80) Вт

 Лампы накаливания

l1.png

(25 — 5000) Вт

 Компьютер

apple-1834328_640.jpg

(200 — 450) Вт

 Электрический чайник

skolko-elektroe-nergii-potreblyaet-chajnik-nowbest.ru_.jpg

(650 — 3100) Вт

 Пылесос

6a.jpg

(1500 — 3000) Вт

 Стиральная машина

atlant.jpeg

(2000 — 4000) Вт

 Трамвай

64216.jpg

(150 000 — 240000) Вт

Источники:

Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1.  Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.

Определение 1

Во время протекания тока по однородному участку цепи электрическое поле совершает работу. За пройденное время Δt по цепи имеется заряд Δq=IΔt.

Электрическое поле выделенного участка выполняет работу, формулу которой мы запишем так: ΔA=(φ1–φ2) Δq=Δφ12IΔt=UIΔt, где U=Δφ12 – напряжение. Такая величина называется работой электрического тока.

Обе части формулы RI=U выражают закон Ома для однородного участка цепи с сопротивлением R, умноженным на IΔt. В итоге получим соотношение RI2Δt=UIΔt=ΔA, выражающее закон сохранения энергии для однородного участка цепи. Работа ΔA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ΔQ, выделяющееся на проводнике. ΔQ=ΔA=RI2Δt.

Закон Джоуля-Ленца

Дж. Джоуль и Э. Ленц установили закон преобразования работы тока в тепло.

Определение 2

Формула мощности электрического тока (измеряется в амперах) записывается в виде отношения изменения работы тока ΔA за определенный промежуток времени Δt:

P=∆A∆t=UI=I2R=U2R.

Работа и мощность электрического тока обратно пропорциональны.

По таблице СИ понятно, в чем измеряется мощность: в ваттах (ВТ), а работа в Джоулях (Дж).

Перейдем к рассмотрению полной цепи постоянного тока, которая состоит из источника с электродвижущей силой ε и внутренним сопротивлением r на участке R. Запись основного закона Ома для полной цепи имеет вид (R + r)I=ε. При умножении обеих частей на Δq=IΔt получаем, что соотношение для выражения сохранения энергии полной цепи постоянного тока запишется: R I2Δt+r I2Δt=ε IΔt=ΔAст. Из левой части видно, что ΔQ=R I2Δt обозначает выделяющееся тепло на внешнем участке за промежуток времени Δt, а ΔQист=rI2Δtвнутри источника за тот же время.

εIΔt – это обозначение работы сторонних сил ΔAст, действующих внутри. Если имеется замкнутая цепь, тогда ΔAст переходит в тепло, которое выделяется во внешней цепи (ΔQ) и внутри источника (ΔQист).

ΔQ+ΔQист=ΔAст=εIΔt.

Работа сторонних сил

Работа электрического поля не входит в данное соотношение, так как в замкнутой цепи работа не совершается, следовательно, тепло идет только от внутренних сторонних сил. В данном случае электрическое поле перераспределяет тепло по всем участкам цепи.

Внешняя цепь может иметь не только проводник с R сопротивлением, но и механизм, потребляющий мощность. Такой случай говорит о том, что R эквивалентно сопротивлению нагрузки. Энергия, которая выделяется по внешней цепи, преобразуется в тепло и другие виды энергии.

Определение 3

Работа, совершаемая сторонними силами за единицу времени, равняется Pист=εI=ε2R+r. Внешняя цепь характеризуется мощностью P=RI2=εI-rI2=ε2R(R+r)2.

Коэффициентом полезного источника называют отношение η=PPист, записываемое как η=PPист=1-rεI=RR+r.

Рисунок 1.11.1 показывает зависимость Pист, полезной Р, выделяемой во внешней цепи, кпд η от тока I для источника с ЭДС, равной ε, и внутренним сопротивлением r. Изменение тока в цепи происходит в пределах от I=0( при R=∞) до I=Iкз=εr( при R=0).

Работа сторонних сил

Рисунок 1.11.1. Зависимость мощности источника Pист, мощности во внешней цепи Р и КПД источника η от силы тока.

Приведенные графики показывают, что максимальная мощность во внешней цепи может быть достигнута при R=r и запишется Pmax=ε24r. Формула тока в цепи будет иметь вид Imax=12Iкз=ε2r, где КПД источника не превышает 50%. При I→0 может достигаться максимальное значение КПД, тогда сопротивление R→∞. При коротком замыкании значение мощности Р=0. Тогда она только выделяется внутри источника, что грозит перегревом, причем КПД обращается в ноль.

Но
прежде, чем мы приступим к рассмотрению новой темы, давайте вспомним, что
называют потребителем электрической энергии.

Итак,
мы с вами уже говорили, что приёмник или потребитель
– это устройство, в котором происходит преобразование электрической энергии в
другие виды энергии для её использования – например, осветительные лампы,
электрические обогреватели, двигатели.

В
электротехнике такие устройства называют нагрузкой.

Также
напомним, что источник электрической энергии, нагрузка и соединительные
провода
– всё вместе это называется электрической цепью.

В
основном все электрические цепи состоят из нескольких потребителей
электроэнергии.

Но
некоторые из этих потребителей, например, провода, выключатели и устройства
защиты, потребляют совсем небольшое количество энергии, если сравнивать с
главным потребителем, который выполняет некоторую работу. Именно этот главный
потребитель и определяет режим работы электрической цепи.

Источник
электроэнергии предоставляет потребителю энергию с определёнными параметрами.
Эти параметры обязательно должны соответствовать параметрам потребителя, иначе
потребитель не будет работать и в скором времени выйдет из строя.

Важно
понимать, что систематическое, даже самое небольшое, превышение допустимых
параметров может привести к преждевременной поломке электрического устройства в
процессе эксплуатации.

Первым
самым важным параметром потребителя электрической цепи является его электрическое
сопротивление
.

Давайте
попробуем разобраться, что же это такое – сопротивление.

Проводники
могут иметь одинаковый размер, но быть изготовлены из разных металлов.

И
при подключении к одному и тому же источнику тока такие проводники будут
совершенно по-разному себя вести, по-разному сопротивляться движению зарядов, и
проводить разной силы ток.

Итак,
электрическое сопротивление – это не что иное, как
противодействие всей электрической цепи или отдельных её участков прохождению
электрического тока.

Сопротивление
измеряется в омах – в честь немецкого учёного Георга Ома.

Отсюда
получаем, что величина сопротивления напрямую зависит от размеров и материала
проводника. Вообще, сопротивление электрического проводника тем больше, чем он
длиннее, чем меньше его поперечное сечение и чем хуже материал проводит
электрический ток.

На
принципиальных схемах проводник, обладающий электрическим сопротивлением,
принято изображать в виде прямоугольника и обозначать латинской буквой R.

Напомним,
что соединение проводников может быть последовательным или параллельным.

При
последовательном соединении проводников с разным сопротивлением общее
электрическое сопротивление будет равно сумме их электрических сопротивлений.

Что
касается параллельного соединения проводников, кстати, именно этим соединением
подключают потребителей электроэнергии в быту и на производстве, то здесь надо
знать, что общее сопротивление всех потребителей уменьшается, а сила тока
источника увеличивается. При этом возрастает опасность перегрузки сети, что
может привести к пожару.

Следующим
не менее важным параметром нагрузки электрической цепи является проводимость.

Вообще,
под проводимостью принято понимать величину, которая обратна
сопротивлению проводника. При параллельном соединении проводников общая
проводимость будет равна сумме их проводимостей.

Ещё
одним параметром потребителей электрической энергии является напряжение.

Вообще,
под напряжением понимают работу, которую совершает источник
электрического тока по перемещению единицы электрического заряда через нагрузку
с сопротивлением R.
Обозначается напряжение латинской буквой U и измеряется в вольтах
– в честь итальянского физика АлессАндро Вольта.

Со
школьного курса физика вам хорошо знаком закон Ома. Из него вытекает,
что протекающий через проводник или потребитель ток тем сильнее, чем больше
напряжение и чем меньше сопротивление.

Именно
этим законом руководствуются при передаче электричества по линиям
электропередач, так как одним из важнейших требований к линиям электропередачи
является уменьшение потерь при доставке энергии потребителю. 

И
последним параметром, о котором мы сегодня поговорим, будет мощность.

Вообще,
мощностью называют работу, которую совершает источник тока в
единицу времени, по перемещению определённого электрического заряда через
потребитель. Мощность измеряется в ваттах – в честь английского
изобретателя Джеймса Уатта. Мощность оборудования зависит как при постоянном
токе, так и при переменном токе от действующих значений напряжения и силы тока.

Во
всех параметрах потребителей электроэнергии, которые мы сегодня назвали: а это
сопротивление, проводимость, напряжение и мощность, обязательно нужно
разбираться. Ведь эти знания помогут вам грамотно пользоваться электроэнергией
и сохранить вашу жизнь и здоровье в безопасности.

Вы
должны были слышать, что проводник в электрической цепи из-за действия
электрического тока может нагреваться. При нагревании проводника из любого
металла происходит его окисление, при этом его сопротивление начинает
увеличиваться, что впоследствии приводит к плавлению проводника и его
разрушению. Поэтому для любого потребителя, для провода или любого другого
элемента электрической цепи существует максимально допустимая мощность.
При такой мощности проводник может довольно долго работать без каких-либо
осложнений.

Если
произойдёт превышение максимально допустимой мощности, то со временем любой
элемент электрической цепи начинает разрушаться.

Все
основные параметры потребителя обязательно наносят на корпус изделия: это
рабочее напряжение, потребляемая мощность или сила тока.

Зная
их, можно сразу же понять соответствует ли электроприбор параметрам остальных
элементов электрической цепи.

Так,
например, параметром проводов и вспомогательных элементов (выключателей,
розеток, вилок, ламповых патронов) является максимально допустимая мощность,
которую обязательно указывают на корпусе этих элементов. В техническом паспорте
на провод обязательно будет записана  величина его площади сечения и допустимая
сила тока.

Итоги
урока

На
этом уроке мы обсудили основные параметры потребителей электроэнергии. Узнали,
что к этим параметрам относятся электрическое сопротивление, проводимость,
напряжение и мощность. В параметрах потребителей электроэнергии, которые мы
сегодня рассмотрели обязательно нужно разбираться. Так как эти знания помогут
сделать пользование электроэнергией грамотным и безопасным для вашей жизни и
здоровья.

Способность
тела производить работу называется
энергией
тела
. Таким
образом, мерой количества энергии
является работа. Энергия тела тем больше,
чем большую работу может произвести
это тело при своем движении. Энергия не
исчезает, а переходит из одной формы в
другую. Например, в генераторе механическая
энергия преобразуется в электрическую
энергию, а в двигателе – электрическая
в механическую. Однако не вся энергия
является полезной, т.е. часть ее расходуется
на преодоление внутреннего сопротивления
источника и проводов.

Работа
электрического тока

численно равна произведению напряжения,
силы тока в цепи и времени его прохождения.
Единица измерения – Джоуль.

Для
измерения работы или энергии электрического
тока используется электроизмерительный
прибор − счетчик
электрической энергии.

Электрическая
энергия помимо джоулей измеряется в
ватт-часах
или киловатт-часах:

1
Вт·ч = 3 600 Дж, 1 кВт·ч = 1 000 Вт·ч.

Мощность
электрического тока

– это работа, производимая (или
потребляемая) в единицу времени. Единица
измерения – Ватт.

Для
измерения мощности электрического тока
используется электроизмерительный
прибор − ваттметр.

Кратными
единицами измерения мощности являются
киловатт или мегаватт:

1
кВт = 1 000 Вт, 1 МВт = 1 000 000 Вт.

В
табл. 1 приведена мощность ряда устройств.

Таблица
1

Название
устройства

Мощность
устройства, кВт

Лампа
карманного фонаря

0,001

Холодильник
домашний

0,11

0,16

Лампы
осветительные (бытовые)

0,015

0,2

Электрический
утюг

0,3

1

Стиральная
машина

0,35

0,6

Электрическая
плита

0,6;
0,8; 1; 1,25

Электропылесос

до
0,6

Лампы
в звездах башен Кремля

5

Двигатель
электровоза ВЛ10

650

Электродвигатель
прокатного стана

6000

9000

Гидрогенератор
Братской ГЭС

250
000

Турбогенератор

50
000 − 1 200 000

Соотношения
между мощностью, током, напряжением и
сопротивлением приведены на рис. 1.

P
U

I
R

R·I

Рис.
1

Скорость,
с которой механическая или другая
энергия преобразуется в источнике в
электрическую называется мощностью
источника
:

где
Wи

электрическая энергия источника.

Скорость,
с которой электрическая энергия
преобразуется в приемнике в другие виды
энергии, в частности в тепловую, называется
мощностью
приемника
:

Мощность,
определяющая непроизвольный расход
энергии, например, на тепловые потери
в источнике или в проводниках, называют
мощностью потерь:

По
закону сохранения энергии мощность
источника равна сумме мощностей
потребителей и потерь:

Это
выражение представляет собой баланс
мощностей
.

Эффективность
передачи энергии от источника к приемнику
характеризует коэффициент полезного
действия (КПД) источника:

где
Р1
или Рист
– мощность, отдаваемая источником
энергии во внешнюю цепь;

Р2
– мощность, получаемая извне или
потребляемая мощность;

P
или Р0
вн)
– мощность, расходуемая на преодоление
потерь в источник или приемнике энергии.

Электрический
ток представляет собой направленное
движение электрически заряженных
частиц. При столкновении движущихся
частиц с молекулами и ионами вещества
кинетическая энергия движущихся частиц
передается ионам и молекулам, вследствие
чего происходит нагревание проводника.
Таким образом, электрическая энергия
преобразуется в тепловую.

В
1844 г. русским академиком Э.Х.
Ленцем

и английским ученым Джоулем
одновременно и независимо друг от друга
был открыт закон, описывающий тепловое
действие тока.

Закон
Джоуля-Ленца
:
при
прохождении электрического тока по
проводнику количество теплоты, выделяемое
проводником, прямо пропорционально
квадрату силы тока, сопротивлению
проводника и времени, в течение которого
электрический ток протекает по проводнику:

где
Q
количество теплоты, Дж,
I
– сила тока, А;
R
– сопротивление проводника, Ом;
t
– время, в течение которого электрический
ток протекал по проводнику, с.

Закон
Джоуля-Ленца используют при расчетах
тепловых режимов источников электроэнергии,
линий электропередачи, потребителей и
других элементов электрической цепи.
Преобразование электроэнергии в тепловую
имеет очень большое практическое
значение. Вместе с тем тепловое действие
во многих случаях оказывается вредным
(рис. 2).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В этой статье мы расскажем вам, что представляет собой мощность электрического тока и как её можно рассчитать.

Определение.

Мощность электрического тока (обозначается буквой P) — это физическая величина, определяемая как количество работы, которая совершается источником электрического напряжения для переноса электрического заряда (q) по проводнику за единицу времени t.

Если сказать в целом, то мощность электрического тока показывает, сколько электрической энергии преобразуется за определенное время. Она, в том числе, описывает энергопотребление потребителя.

Формулы

На многих бытовых электроприёмниках есть этикетки с указанием мощности. Мощность (P) говорит о работе (A), выполняемой электроприбором в единицу времени (t). Поэтому, дабы отыскать среднюю мощность электрического тока, необходимо поделить его работу на время, то есть P = A / t.

Давайте рассмотрим, что такое мощность электрического тока. Для этого рассмотрим электрическую цепь (см. рисунок 1), состоящую из источника тока, проводов и какого-либо электроприёмника, которым может быть резистор, аккумулятор, электродвигатель и т.д.

Электрическая цепь, в которой напряжение и ток постоянны

Рис. 1. Электрическая цепь, в которой напряжение и ток постоянны

Рекомендуемое электрическое напряжение также указывается на электрооборудовании. Как эти две величины связаны друг с другом? Из школьного курса физики мы знаем, что напряжение (U) между концами данного электроприёмника определяется следующим образом: U = A / q, где: A — работа, совершаемая источником электрического напряжения для переноса электрического заряда (q) по проводнику.

Величина электрического заряда рассчитывается по формуле: q = I * t

Имеем A = P * t; A = U*q, а q = I * t. После преобразования формул получаем: A = P*t = U*q = U*I*t

Отсюда следует (разделив обе стороны уравнения на t), что P = U*I. То есть мы можем сказать, что количество энергии, переданное от источника тока к резистору определяется по формуле: P = U * I

Из этой формулы можно найти, что U = P / I , I = P / U.

Согласно закону Ома для участка цепи I = U/R, где R — электрическое сопротивление участка цепи. Потому из формулы P = U*I следуют две другие формулы для мощности электрического тока, то есть P = U2/R, P = I2R.

Формулу P = I2R комфортно применять для электрических цепей с последовательным соединением проводников, потому что сила электрического тока при таком соединении в проводниках одинакова.

Для параллельно соединенных проводников работу и мощность удобнее выражать через одинаковое для их электрическое напряжение, исключая силу электрического тока, т.е. лучше применять формулу P = U2/R.

Если электроприборы соединены последовательно либо параллельно, их электрическая мощность суммируется. В данном случае для расчета полной мощности употребляется такая формула:

Pобщ = P1 + P2 + … + Pn, где P1 , P2 , … — мощность отдельно взятых электроприёмников.

Единицы измерения и обозначение

Единицей измерения мощности в Международной системе единиц (СИ), является ватт. При этом русское обозначение: Вт, международное: W). 1 Вт = 1 Дж/c. Из формулы P = U*I следует, что: 1 ватт = 1 вольт * 1 ампер, или 1 Вт = 1 В*А.

Есть также единицы измерения мощности, кратные ваттам: гектаватт (гВт), киловатт (кВт), мегаватт (МВт). Другими словами 1 гВт = 100 Вт, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.

Единицы мощности, применяемые в электротехнике, кратны ватту: микроватт (мкВт), милливатт (мВт), гектоватт (гВт), киловатт (кВт) и мегаватт (МВт). Другими словами, 1 мкВт = 1*10-6 Вт, 1 мВт = 1*10-3 Вт, 1 гВт = 1*102 Вт, 1 кВт = 1*103 Вт, 1 МВт = 1*106 Вт.

Каждый электроприбор имеет определенную мощность (указана на приборе). Вот типовые значения мощности для некоторых электроприборов.

Прибор Мощность, Вт
Телевизор в режиме ожидания 0,5
Лампа карманного фонарика Около 1
Лампы накаливания 25-150
Холодильник 160
Электронагреватель 500-2000
Пылесос До 1300-1800
Электрочайник Около 2000
Утюг 1200-2200
Стиральная машина До 2300

Раньше для обозначения мощности использовалась единица измерения — лошадиная сила (л.с.), которая известна и сейчас. Переведите из лошадиных сил в ватты, используя выражение: 1 л.с. = 735.5 Вт.

Пример расчета мощности электрического тока

В конце концов, вы сможете проверить свои познания на 2-ух обычных примерах.

Представьте, что в первой задачке у вас есть резистор R = 50 Ом, через который течет электрический ток I = 0,3А. Какая электрическая мощность преобразуется в этом резисторе?

Вы можете отыскать решение, найдя соответствующую формулу и подставив в нее заданные значения. То есть у нас получается: P = I2R = 0,32  * 50 = 4,5 Вт

Во второй задаче дан резистор R, электрическое сопротивление которого 700 Ом. В техническом описании указано, что максимальная мощность этого резистора составляет 10 Вт. Насколько высоким может быть напряжение, подаваемое на этот резистор?

Для решения этой задачки подбираем подходящую формулу: P = U2/R, откуда мы находим Umax = Pmax * R = 700 * 10 = 83,67 В.

Это означает, что максимальное напряжение может составлять 83,67 В. Чтобы подстраховаться, следует выбирать электрическое напряжение значительно ниже этого предела.

Более подробно о том как можно находить мощность электрического тока я писал в статье: https://www.asutpp.ru/kak-nayti-moschnost.html

Измерение мощности электрического тока

Вы сможете измерить силу электрического тока при помощи вольтметра и амперметра. Чтобы высчитать нужную мощность, помножьте электрическое напряжение на силу тока. Электрический ток и напряжение можно найти по показаниям приборов.

Измерение мощности электрического тока

Рис. 2. Измерение мощности электрического тока

Помните, что вы всегда должны определять электрическое напряжение параллельно нагрузке и электрический ток последовательно.

Есть особые приборы – ваттметры, определяющие мощность электрического тока в цепи, которые, по сути, подменяют два устройства – амперметр и вольтметр.

Единицы измерения электрического тока, применяемые на практике

В паспортах потребителей электроэнергии – лампочки, плиты, электродвигатели – обычно указывают силу электрического тока в них. Исходя из мощности, найти работу электрического тока за данный промежуток времени довольно просто, нужно лишь использовать формулу A = P*t.

Выразив мощность в ваттах, а время в секундах, мы получим работу в джоулях: 1 Вт = 1 Дж/с, где 1 Дж = 1 Вт*с.

Но эту единицу работы неудобно применять на практике, так как электроприёмники потребляют ее в течение долгих периодов времени, как, к примеру, в бытовых устройствах – в течение нескольких часов, в электропоездах – в течение нескольких часов либо даже суток, а расчет потребленной энергии по электросчетчику в большинстве случаев делается раз в месяц.

Потому при расчете работы тока либо затраченной и выработанной электроэнергии во всех этих случаях нужно переводить эти промежутки времени в секунды, что усложняет расчеты.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]

Потому на практике, при расчете работы электрического тока, более удобно выражать время в часах, а работу электрического тока не в джоулях, а в других единицах: например, ватт-час (Вт*ч), гектоватт*час (гВт*ч), киловатт-час (кВт*ч).

Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]

Будут верны следующие соотношения:

  • 1 Вт*ч = 3600 Дж;
  • 1 гВт*ч = 100 Вт*ч = 360 000 Дж;
  • 1 кВт*ч = 1000 Вт*ч = 3 600 000 Дж.

Задача. Существует электрическая лампа, рассчитанная на ток в мощностью 100 ватт. Лампа работает в течение 6 часов каждый день. Нам нужно отыскать работу электрического тока за один месяц (30 дней) и стоимость потребленной электроэнергии, предполагая, что тариф составляет 500 копеек за один кВт/ч.

Запишем условие задачки и решим ее.

Входные данные: P = 100 Вт, t = 6 ч * 30 = 180 ч, тариф = 500 к / кВт*ч .

Решение задачи. Мы знаем, что A = P*t, потому получаем: A = 100 Вт*180 ч = 18 000 Вт*ч = 18 кВт*ч.

Мы рассчитываем стоимость так: Стоимость = 500 к / кВт*ч * 18 кВт*ч = 9000 копеек = 90 рублей.

Ответ: A = 18 кВт*ч, стоимость израсходованной электроэнергии = 90 рублей.

Связь мощности тока с действием тока в электрической цепи

Сравнение мощности тока с номинальной мощностью электрического прибора позволяет определить, насколько сильно нагружен в электрической цепи прибор. Если мощность тока меньше номинального, то действие тока не достаточно интенсивно или совсем не проявляется. Подключение мощного прибора к слабому источнику тока не вызывает в нем никаких действий. Приборы, рассчитанные на малую мощность работы тока, при подключении к источникам, создающим сильное поле, сгорают.

Список использованной литературы

  1. Физика, 8 класс, Исаченкова Л.А., Лещинский Ю.Д., Дорофейчик В.В., 2018
  2. Перышкин А.В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. – М.: Просвещение.

Понравилась статья? Поделить с друзьями:
  • Работы лежащие на критическом пути имеют резерв времени равный
  • Работы по дереву столярные соединения проверенные временем pdf
  • Радиорынок в нижнем новгороде адрес как проехать где находится
  • Приморская рыболовная компания южно сахалинск официальный сайт
  • Радиорынок в ростове на дону местонахождение часы работы адрес