Существует огромное количество методологий моделирования бизнес-процессов. Многие обычно применяют в комплексе, потому что нет единой универсальной методологии для всех компаний и сфер бизнеса. Чтобы систематизировать работу сотрудников и повышать эффективность компании, аналитик должен владеть хотя бы тремя современными методологиями.
В статье разбираем, зачем моделировать бизнес-процессы, и перечисляем нотации, которые точно должны быть в арсенале бизнес-аналитика. Статья будет полезна начинающим аналитикам, желающим разобраться в вопросе и выбрать инструменты, с которыми они будут работать.
Что такое моделирование бизнес-процессов
Бизнес-процесс — логически выстроенная последовательность действий, которые решают конкретную задачу компании. Это может быть обработка заявки клиента, организация доставки или оформления в штат нового сотрудника.
Моделирование бизнес-процессов позволяет детально описать действия участников. Описанные данные трансформируются в модель, которая помогает понять суть и структуру бизнес-процесса.
Для создания модели бизнес-процесса важно определить:
- из каких действий состоит процесс,
- кто выполняет действия и отвечает за них,
- какие ресурсы нужны для выполнения,
- какой результат требуется получить,
- какие документы регламентируют процесс,
- как оценивается выполнение процесса.
Пример. Предположим, бизнес-процесс — привлечение клиентов в фитнес-центр. Результат — продажа годового абонемента тренировок с инструктором. Для его достижения администратор должен закрыть возможные возражения и убедить клиента записаться на пробное занятие, а инструктор — провести бесплатное занятие так, чтобы клиент захотел приобрести платные тренировки. Процесс регламентируется расписанием и внутренними правилами фитнес-центра. Процесс считается выполненным, когда клиент оформил и оплатил абонемент в кассе
Ежедневные советы от диджитал-наставника Checkroi прямо в твоем телеграме!
Подписывайся на канал
Подписаться
Зачем нужно моделировать бизнес-процессы
Основная цель моделирования — повышение эффективности деятельности компании. С помощью описания бизнес-процессов аналитик оптимизирует работу, выявляет и устраняет имеющиеся ошибки, прогнозирует возможные риски.
Проблемы, которых помогает избежать моделирование бизнес-процессов:
- Неизвестность, как поступить на определённом этапе развития компании. Вы описываете жизненный цикл организации, особенности ведения документооборота, взаимодействия с клиентами и прочие ключевые процессы. Чёткая схема взаимодействия отделов и сотрудников позволяет понять, что можно улучшить.
- Сложности с обучением новых специалистов и масштабированием. Вы существенно сокращаете время на адаптацию и онбординг новых кадров за счёт описания внутренней структуры и особенностей выполнения обязанностей. Сотрудник осознает свою роль в компании, понимает, как выполнять ежедневные задачи.
- Хаос в команде. Вы документируете и оптимизируете бизнес-процессы, поэтому все понимают, кто и за что отвечает. У сотрудников есть не только должности, но и чётко прописанный набор полномочий. В результате работа не дублируется, задачи решаются в порядке значимости, вероятность конфликтов сведена к минимуму.
- Снижение акционерной ценности компании и непредвиденные расходы. Вы делаете работу каждого сотрудника в компании прозрачной, контролируете доходы и расходы. Когда все процессы регламентированы, возможность хищения или сокрытия денег практически исключена.
- Потеря клиентов. Вы налаживаете внутренние процессы, что позволяет команде быстро и эффективно работать. Менеджеры успевают оперативно обрабатывать заявки и не терять покупателей. Сохраняется высокий уровень доверия и лояльности аудитории.
Чем описание бизнес-процессов отличается от моделирования
Описание бизнес-процессов — перечисление действий участников в свободной форме. Скажем, простые пользовательские сценарии в текстовом виде. В отличие от моделирования при описании не требуется соблюдать формальную логику и специальные обозначения, использовать формализованные языки.
Хотя разница между описанием и моделированием есть, часто ею пренебрегают и используют термины как синонимы.
Классификация методологий моделирования бизнес-процессов
Методология моделирования — совокупность принципов и стандартов описания бизнес-процессов. Определяет последовательность действий, которые нужно выполнить для построения модели.
Методология включает в себя:
- Метод моделирования — способ представления реального объекта с помощью объектов модели.
- Процедуру — последовательность шагов по сбору и обработке информации.
- Нотацию — язык моделирования. Каждый язык имеет свой синтаксис — условные обозначения элементов и правила их сочетания, а также семантику — правила толкования моделей и их элементов.
В основе методологии моделирования могут лежать три подхода:
- Структурный подход рассматривает систему как набор элементов, подсистем и отношений между ними. Используется для организационного развития предприятий и компаний: ищет способы оптимизации, разрабатывает рабочие регламенты и должностные инструкции. Методологии: SADT, DFD, WFD.
- Объектно-ориентированный подход рассматривает систему как набор взаимодействующих объектов. Объекты — предметы, которые преобразуются при выполнении процессов. При объектно-ориентированном подходе сначала выделяются объекты, а затем действия, в которых они участвуют. Подход используется для визуализации, конструирования и документирования. Методология: BAAM.
- Интегрированный подход объединяет структурный и объектно-ориентированный подходы. Даёт полное и комплексное представление о моделируемом объекте. Методология: ARIS.
Единого верного способа моделирования нет. Важно правильно ставить цель и исходя из неё выбирать подходящие инструменты реализации.
Разберём особенности популярных методологий моделирования.
SADT
SADT — методология структурного анализа и проектирования, разработанная Дугласом Россом в 1969-1973 годах. Объединяет и организует диаграммы в иерархические древовидные структуры — чем выше уровень диаграммы, тем она менее детализирована.
Диаграммы SADT состоят из:
- блоков, которые изображают активность моделируемой системы;
- дуг, которые связывают блоки вместе и отображают взаимодействия.
Методология применяется на ранних этапах создания системы для определения требований к ней. В США SADT успешно использовалась в военных и коммерческих организациях для долгосрочного стратегического планирования и управления финансами.
Особенности методологии SADT:
- Универсальность — может использоваться для проектирования сложных систем любого назначения: управления и контроля, телефонных сетей, учёт материально-технических ресурсов.
- Способность отражать такие системные характеристики, как управление, обратная связь и исполнители.
- Наличие процедур для поддержки коллективной работы.
- Возможность использования на ранних этапах создания системы и сочетания с другими структурными методами проектирования.
Самая распространённая нотация — IDEF0.
Пример бизнес-процесса в нотации IDEF0
DFD
DFD — методология потоков данных. Описывает внешние по отношению к системе источники и адресаты, логические функции, потоки и хранилища данных. Может быть представлена в виде графического структурного анализа или диаграммы. На диаграмме отображают работы, которые входят в состав описываемого бизнес-процесса, а также входы и выхода каждой из них.
Методология применяется для моделирования информационных систем и выявления проблем документооборота. Описывает любые действия: процесс продажи или отгрузки товаров, работу с заявками, закупку сырья. DFD помогает понять, из чего должна состоять информационная система и как автоматизировать бизнес-процессы.
Особенности методологии DFD:
- описывает не столько бизнес-процессы, сколько движения потоков данных;
- процессы не существуют сами по себе, поэтому результат должен куда-то передаваться;
- используется при разработке программного обеспечения;
- нет ограничения по количеству элементов, которые могут находиться на одной диаграмме.
Самые распространённые нотации — Эд Йордана и Тома де Марко.
Пример описания процесса обработки заказа клиента с помощью методологии DFD
WFD
WFD — методология потоков данных. Описывает бизнес-процессы нижнего уровня, где возникает необходимость показать временную последовательность выполнения работ.
Методология применяется для моделирования таких бизнес-процессов компаний как: «Выставление счетов», «Подготовка договора», «Изготовление детали».
Особенности методологии WFD:
- Использует дополнительные объекты для описания процессов: логических операторов, события начала и окончания процесса, а также элементы, показывающие временные задержки.
- Показывает альтернативы, которые происходят в процессе. Например, с помощью методологии вы можете описать ситуацию, когда договор на меньшую сумму согласуется с одной группой сотрудников, а на большую — с другой группой по более сложной технологии.
- Стрелки между операциями бизнес-процесса обозначают не потоки объектов, последовательность выполнения работ.
Самая распространённая нотация — IDEF3.
Пример описания процесса согласования договора с помощью нотации IDEF3
ARIS
ARIS — одновременно и методология, и программный продукт для моделирования бизнес-процессов организации. Методология ARIS разработана профессором Августом Шеером в 1990-х годах. Она представляет собой современный подход к структурированному описанию деятельности компании, представлению её в виде взаимосвязанных графических диаграмм, удобных для понимания и анализа.
Методология применяется на крупных или длительных проектах, а также предприятиях с достаточным оборотом денежных средств. Это обусловлено стоимостью внедрения и трудозатратами по сопровождению и поддержке. ARIS подходит для управленческого консалтинга, внедрения систем управления качеством, анализа и оптимизации бизнес-процессов. Она позволяет классифицировать и структурировать операционные риски, вести документооборот.
Особенности методологии ARIS:
- основывается на концепции интеграции, предлагает целостный взгляд на процессы;
- рассматривает и представляет любую организацию как единую систему;
- насчитывает более 80 моделей, поэтому для осмысленного применения требуется время;
- использует разные уровни описания: что система должна знать, какие у неё пути реализации, а также программные и технические средства.
- её внедрению должна предшествовать «ручная» проектно-аналитическая работа;
- главное преимущество — высокая степень визуализации бизнес-моделей.
Самые распространённые нотации — EPC, UML и BPMN.
Пример бизнес-процесса в BPMN-нотации
BAAM
BAAM — методология описания деятельности. Включает в себя шесть бизнес-моделей: ESM, BCM, BPM, BFM, BOM, ERM. С их помощью последовательно описывает функции, бизнес-процессы, организационные и структурные особенности компаний, её подразделения, а также материальные и информационные потоки между ними. Методология представляет собой схему, на которой вместо работ отображаются структурные подразделения и взаимодействия между ними.
Методология применяется для описания бизнес-процессов в крупных компаниях. Отображает подразделения и должности, которые есть в организации, а также связи линейного и функционального подчинения. Помогает проектировать базы данных.
Особенности методологии BAAM:
- описывает подразделения компании и потоки между ними;
- описывает бизнес-процессы отдельных подразделений;
- формирует управляющие работы, а также состояния, характеризующие начало и конец каждой работы;
- описывает должности организации;
- определяет структуру информации, которая необходима для бизнес-процессов.
Самые распространённые нотации — Нотация Питера Чена, нотация Гордона Эвереста Crow’s Foot.
Пример бизнес-процесса в нотации Питера Чена
Сравнение нотаций
Нотации — графические модели, которые используются для фиксации бизнес-процессов. Помогают наглядно представить алгоритм действий. Выше мы перечислили десять нотаций для разных методологий, но самые популярные из них — IDEF0, EPC, BPMN. Сравним их.
Критерий сравнения |
IDEF0 |
EPC |
BPMN |
Принцип построения диаграммы | Принцип доминирования | Временная последовательность выполнения процедур | Временная последовательность выполнения процедур |
Описание процедуры процесса | Объект на диаграмме | Объект на диаграмме | Объект на диаграмме |
Модель отражает | Структуру системы, функции, потоки ресурсов и информации | Структуру системы, функции, потоки ресурсов и информации | Функции системы, внутренние процессы |
Графические элементы | Прямоугольники — действия и этапы.
Стрелки — ресурсы и исполнители |
Фигуры разных цветов. Розовые — события, зелёные — функции, жёлтые — исполнители, серые — ресурсы, оранжевые — ИС.
Соединительные элементы — стрелки и разделители «и», «или» |
Задача — прямоугольник, событие — круг, поток — стрелка. Также есть сноски и базы данных |
Достоинство | Высокая степень детализации. Можно создать модель, которая будет учитывать практически все ресурсы, всех сотрудников | Простота восприятия | Простота восприятия.
Подходит для описания внутренних бизнес-процессов компании |
Недостаток | Модель занимает много места | Приходится создавать события даже для незначительных этапов | Зациклена на бизнес-процессах, не подходит для описания структуры |
Сфера применения | Долгосрочное планирование, управление финансами | Описание технологических процессов предприятия — выставление счетов, отгрузки товаров и т.д. | Управленческий консалтинг, внедрение систем управления качеством, оптимизация бизнес-процессов |
Коротко о главном
Моделирование бизнес-процессов — инструмент, который помогает аналитику выявлять проблемные места и зоны роста, оптимизировать работу команды. Чтобы правильно смоделировать бизнес-процесс, важно подготовить необходимую информацию, прописать последовательность работ и поставить цель. Когда вы начинающий аналитик, избежать всех ошибок невозможно, но можно попытаться свести их к минимуму.
Министерство образования и науки Российской Федерации
Томский государственный университет систем управления и радиоэлектроники
В.А. Силич, М.П. Силич
МОДЕЛИРОВАНИЕ И АНАЛИЗ БИЗНЕС-ПРОЦЕССОВ
Учебное пособие
Рекомендовано Сибирским региональным учебно-методическим центром высшего профессионального образования
для межвузовского использования в качестве учебного пособия для студентов, обучающихся по направлению подготовки 080700 «Бизнес-информатика»
4 |
Моделирование и анализ бизнес-процессов |
УДК 658.014.1.001.57(075.8)
ББК 65.290я73
С-362
Рецензенты:
Марков Н.Г., д-р техн. наук, профессор зав. кафедрой вычислительной техники Томского политехнического университета;
Кошкин Г.М., д-р физ.-мат. наук, профессор кафедры теоретической кибернетики ФПМК
Томского государственного университета
Силич В.А., Силич М.П.
С-362 Моделирование и анализ бизнес-процессов: учеб. пособие / В.А. Силич, М.П. Силич. — Томск : Изд-во Томск. гос. ун-та систем управления и радиоэлектроники, 2011. — 212 с.
ISBN 978-5-86889-511-1
Рассматриваются вопросы моделирования и анализа бизнес-процессов, наиболее значимых при использовании различных технологий совершенствования бизнеса. Излагаются основы процессного подхода к организации деятельности предприятий. Рассматриваются современные методы моделирования процессов: структурные, объектно-ориентированные, имитационные, интегрированные. Приводятся различные методы анализа бизнес-процессов и окружения. Осуществляется обзор инструментальных средств, используемых для моделирования и анализа бизнеса. Описываются технологии непрерывного совершенствования процессов и реинжиниринга бизнес-процессов.
Предназначено для студентов, обучающихся по направлению 080700 «Бизнес-информатика».
УДК 658.014.1.001.57(075.8)
ББК 65.290я73
ISBN 978-5-86889-511-1 |
© Силич В.А, Силич М.П., 2011 |
© Томск. гос. ун-т систем управления |
|
и радиоэлектроники, 2011 |
Моделирование и анализ бизнес-процессов |
3 |
Оглавление
Введение ………………………………………………………. |
5 |
|
Глава |
1. Функциональный и процессный подходы |
|
1.1. Функциональный подход к управлению организацией |
8 |
|
1.2. Необходимость новых подходов ……………………. |
12 |
|
1.3. Сравнение функционального и процессного подходов |
15 |
|
1.4. Процессно-ориентированная структура управления |
18 |
|
1.5. История развития процессного подхода ……………. |
25 |
|
Глава 2. Основные понятия процессного подхода |
2.1.Организация как система …………………………….. 31
2.2.Понятие бизнес-процесса ……………………………. 40
2.3.Компоненты бизнес-процесса ……………………….. 44
2.4. Классификация бизнес-процессов …………………… |
48 |
Глава 3. Моделирование бизнес-процессов |
|
3.1. Виды моделей ………………………………………… |
59 |
3.1.1. Понятия модели и моделирования …………… |
59 |
3.1.2.Классификация моделей ………………………. 61
3.1.3.Классификация методологий моделирования бизнеса ………………………………………….. 66
3.2.Структурные методологии моделирования …………. 70
3.2.1.Методология моделирования IDEF0 ………….. 70
3.2.2.Методология моделирования IDEF3 ………….. 78
3.2.3.Методология моделирования DFD ……………. 82
3.3. Объектно-ориентированный язык моделирования UML |
85 |
3.3.1. Объектно-ориентированное моделирование …. |
85 |
3.3.2.Прецедентная модель бизнеса …………………. 87
3.3.3.Объектная модель бизнеса ……………………… 94
3.4.Язык имитационного моделирования SIMAN ………. 99
3.5. Интегрированная методология моделирования ARIS 103
3.5.1.Виды и типы моделей ARIS ……………………. 103
3.5.2.Взаимосвязь моделей ARIS …………………….. 110
4 |
Моделирование и анализ бизнес-процессов |
Глава 4. Анализ бизнеса |
|
4.1. Виды анализа …………………………………………. |
114 |
4.2. Виды измерений и обработки результатов измерений |
117 |
4.3.Анализ окружения ……………………………………. 123
4.3.1.Анализ требований клиентов ………………….. 123
4.3.2.Анализ поставщиков/партнеров ………………. 126
4.3.3.Анализ конкурентов (бенчмаркинг) …………… 127
4.4.Анализ бизнес-процессов …………………………….. 128
4.4.1.Качественный анализ бизнес-процессов ……… 128
4.4.2.Анализ стоимости и длительности бизнес-процессов ………………………………. 131
4.4.3.Анализ рисков бизнес-процессов …………….. 137
Глава 5. Инструментальные средства моделирования
ианализа бизнес-процессов
5.1.Классификация инструментальных средств ………… 143
5.2.Выбор инструментальных средств ………………….. 151
5.3.Характеристика инструментальных средств ……….. 153 5.3.1. Инструментальное средство BPwin ………….. 153 5.3.2. Case-средство Rational Rose …………………… 157
5.3.3. Средство имитационного моделирования Arena |
164 |
|
5.3.4. Интегрированная среда ARIS …………………. 167 |
||
Глава |
6. Совершенствование бизнес-процессов |
|
6.1. |
Управление совершенствованием бизнес-процессов |
174 |
6.2.Технология непрерывного совершенствования бизнес-процессов …………………………………….. 178
6.3.Технология реинжиниринга бизнес-процессов …….. 183
6.4. Инструменты реконструкции бизнеса ……………… 189
6.4.1.Правила реконструкции бизнеса ……………… 189
6.4.2.Роль информационных технологий
в реконструкции бизнеса ………………………. 204
Заключение ……………………………………………………. 208 Литература …………………………………………………….. 209
Введение
Процессный подход в настоящее время является доминирующим в современной теории менеджмента. Проделав путь от теории непрерывного усовершенствования процессов, предложенной Э. Демингом еще в 40-е годы прошлого столетия, до современных технологий менеджмента качества и реинжиниринга бизнес-процессов, он стал наиболее востребованной концепцией в практике управления деятельностью предприятия.
Дисциплина «Моделирование и анализ бизнес-процессов» раскрывает как теоретические основы процессного подхода, управления бизнес-процессами и их оптимизации, так и прикладные методы моделирования, анализа и совершенствования процессов, необходимые для успешной реализации полученных знаний на практике, прежде всего в работе над различными проектами по совершенствованию процессов промышленных компаний. Дисциплина находится на стыке таких научных дисциплин, как теория систем, системный анализ, теория менеджмента, информатика и новые информационные технологии.
Настоящее учебное пособие содержит пять глав.
Первая глава посвящена сравнению классического функционального подхода к организации деятельности предприятия и нового процессно-ориентированного подхода. Рассматривается становление и развитие функционального подхода, изменение условий функционирования организаций, появление новых тенденций, приведших к возникновению процессного подхода. Дается сравнительная характеристика обоих подходов. Описывается новая процессно-ориентированная структура управления. Приводится история развития процессного подхода.
6 |
Моделирование и анализ бизнес-процессов |
Во второй главе вводятся основные понятия процессного подхода. Это, прежде всего, понятия теории систем и системного анализа применительно к рассмотрению организации как системы. Дается определение бизнес-процесса, рассматриваются его основные свойства, компоненты, принципы выделения. Приводится классификация бизнес-процессов и дается краткая характеристика процессов производства, процессов управления и развития (оптимизации).
Основным содержанием третьей главы является описание методов моделирования бизнес-процессов. Излагаются общие принципы моделирования деятельности. Вводится общая классификация моделей и классификация методов моделирования бизнеса. Описываются наиболее распространенные структурные методологии моделирования — IDEF0, IDEF3 и DFD. Рассматривается применение наиболее популярной методологии объ- ектно-ориентированного моделирования — языка UML — для моделирования бизнеса. Дается краткое описание языка имитационного моделирования SIMAN, а также интегрированной методологии ARIS.
В четвертой главе рассматриваются методы анализа биз- нес-процессов. Дается классификация видов анализа и измерения бизнес-процессов, приводятся некоторые способы обработки результатов измерений. Рассматриваются методы анализа окружения бизнеса (клиентов, поставщиков/партнеров, конкурентов), качественные методы анализа бизнес-процессов (определение приоритетных процессов, логический анализ, оценка шагов процесса), методы анализа процессов по метрикам стоимости и длительности (функционально-стоимостной анализ, методы календарного планирования и управления проектами), а также анализ рисков процесса.
Пятая глава посвящена инструментальным средствам моделирования и анализа. Приводится их классификация, перечень факторов выбора, а также краткая характеристика наиболее распространенных средств.
В шестой главе обсуждаются вопросы оптимизации биз- нес-процессов. Рассматривается типовая структура управления совершенствованием бизнес-процессов. Поэтапно описываются технологии непрерывного совершенствования процессов и реинжиниринга бизнес-процессов. Более подробно рассматриваются правила реконструкции бизнеса и роль новых информационных технологий в реинжиниринге.
8 |
Глава 1. Функциональный и процессный подходы |
Глава 1
ФУНКЦИОНАЛЬНЫЙ И ПРОЦЕССНЫЙ ПОДХОДЫ
1.1.Функциональный подход
куправлению организацией
Промышленная революция XVII–XIX вв. поставила задачу научного подхода к управлению людьми в организациях. Развитие техники и технологии привело к концентрации огромного числа рабочих на фабриках и заводах и, естественно, вызвало множество организационных проблем. Такое усложнение бизнеса потребовало более систематизированного, научно обоснованного подхода к организации производства и управлению [1].
Одной из первых теорий, связанных с организационным управлением, явилась экономическая теория Адама Смита. В своем фундаментальном труде «Благосостояние нации», опубликованном в 1776 г., Смит сформулировал революционные для того времени принципы организации труда в промышленности. Производственный процесс предполагалось разбить на элементарные, простые задания (работы), каждое из которых мог выполнить один рабочий. От рабочего не требовалось умения выполнять работу в целом — достаточно, чтобы он специализировался на одном или на нескольких простейших заданиях. Смит утверждал, что принцип разделения труда дает производителям беспрецедентные возможности увеличения производительности. Преимущества специализации были проиллюстрированы им на при-
Функциональный подход к управлению организацией |
9 |
мере мануфактуры по производству булавок. Один рабочий, выполняя все операции самостоятельно, мог производить не более 20 булавок в день. В мануфактуре каждый из десяти работников выполнял специализированную задачу: один тянет проволоку, другой выпрямляет ее, третий обрезает, четвертый заостряет конец и т. д. В результате 10 человек производили 48000 булавок ежедневно [1, 2].
Последовательным сторонником специализации был основатель теории научного управления Фредерик У. Тейлор (1856– 1915 гг.). Основная идея его теории — четкая регламентация труда рабочих. Тейлор предлагал для каждой работы находить наиболее эффективный вариант ее выполнения (описанный вплоть до отдельных движений), нормировать время выполнения работы и добиваться от рабочих неукоснительного соблюдения порядка выполнения работы. При этом функции по управлению и планированию работ должны быть отделены от фактического выполнения работ, что резко контрастировало со старой системой, при которой рабочие сами планировали свою работу.
Тейлор обосновал необходимость функционального руководства группами исполнителей. На каждом уровне организации происходит специализация функций. Деятельность по планированию должна осуществляться специальными отделами планирования, причем отдельные подфункции должны выполняться отдельными специалистами. Так, выделяются служащий по порядку и направлению работы, служащий по инструкциям, служащий по времени и стоимости, служащий по соблюдению дисциплины. Деятельность по управлению низовыми звеньями также подразделяется на подфункции, выполняемые отдельными служащими. Выделяются, к примеру, начальник смены, приемщик, руководитель по нормированию и т. д. [1, 3].
Административный подход, основателем которого считается французский инженер и исследователь Анри Файоль, расширил представления об управлении производством и задачах управляющих. Файоль систематизировал, структурировал административную деятельность, осуществляемую на предприятиях,
10 |
Глава 1. Функциональный и процессный подходы |
выделил классические функции менеджмента. Он предложил четырнадцать принципов управления, основными из которых являются [3]:
1)разделение труда, при котором специализация является естественным порядком вещей;
2)единство цели и руководства, когда виды работ, имеющие общую цель, группируются, выполняются по единому плану и руководство ими осуществляется одним руководителем;
3)соотношение централизации и децентрализации, при котором для каждой ситуации существует оптимальный баланс между централизацией и децентрализацией;
4)единоначалие, предполагающее получение приказов (распоряжений) каждым работником только от одного непосредственного начальника;
5)принцип цепи команд, означающий создание в организации соподчиненной цепи руководителей от высшей власти до низших уровней. Эта цепь — путь для вертикальных связей.
Линейно-функциональная организационная структура, отвечающая принципам классической теории менеджмента, представляет собой иерархию (рис. 1.1). В непосредственном подчинении руководителя организации находятся менеджеры, руководящие выполнением той или иной функции — производством, матери- ально-техническим снабжением, маркетингом, сбытом, финансами и т. д. Функции подлежат дальнейшему дроблению, им сопоставляются управляющие более низкого уровня, и так вплоть до исполнительского уровня.
Количество уровней может достигать пяти-шести и во многом зависит от количества исполнителей. Дело в том, что при традиционной организации труда управляющие, выполняющие функции координации, руководства и контроля, не могут эффективно управлять слишком большим количеством людей. Диапазон контроля (число работников, находящихся в непосредственном подчинении), как правило, составляет 3–10 человек. Поэтому подразделения, в которых работает большее количество сотрудников, разбиваются на группы (бригады, участки, лаборатории).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Важным шагом структуризации деятельности любой организации являются выделение и классификация бизнес-процессов.
По отношению к получению добавленной ценности продукта или услуги можно выделить следующие классы процессов:
- основные процессы;
- обеспечивающие процессы.
Основными бизнес-процессами являются процессы, добавляющие ценность. Они ориентированы на производство товаров или оказание услуг, составляющих основную деятельность организации и обеспечивающих получение дохода. Примерами таких процессов на предприятии являются процессы маркетинга, производства, поставки и сервисного обслуживания продукции.
Обеспечивающие бизнес-процессы не добавляют ценность продукта или услуги для потребителя, но увеличивают их стоимость. Они необходимы для деятельности предприятия и предназначены для поддержки выполнения основных бизнес-процессов. Такими процессами являются финансовое обеспечения деятельности, обеспечение кадрами, юридическое обеспечение, администрирование, обеспечение безопасности, поставка комплектующих материалов, ремонт и техническое обслуживание и т.д.
Бизнес-процессы можно также классифицировать по видам деятельности или составу работ (элементам процесса) [Репин-04]:
- планирование деятельности (например, планирование производства готовой продукции);
- осуществление деятельности – собственно выполнение работы (например, изготовление продукции);
- регистрация фактической информации по выполнению процесса (производственный, управленческий и бухгалтерский учет);
- контроль и анализ исполнения плана;
- принятие управленческих решений. Эти процессы охватывают весь комплекс функций управления на уровне каждого бизнеспроцесса и системы в целом. Примерами таких процессов могут быть процессы стратегического, оперативного и текущего планирования, процессы формирования и выполнения управляющих воздействий. Процессы управления оказывают воздействие на все остальные процессы организации.
Бизнес-модель – это формализованное (графическое, табличное, текстовое, символьное) описание бизнес-процессов, отражающее реально существующую или предполагаемую деятельность предприятия.
В простейшем случае бизнес-модель может состоять из единственной диаграммы, однако на практике это вряд ли допустимо, поскольку бизнес-процессы, как правило, слишком сложны и многоаспектны. Модель таких процессов включает следующие компоненты [Eriksson-2000]:
- Представления. Каждое представление отражает определенный аспект бизнес-процессов. Представление – это абстракция, отражающая конкретную точку зрения и скрывающая детали, несущественные для данной точки зрения.
- Диаграммы. Каждое представление состоит из ряда диаграмм различных типов, отражающих структурные и динамические аспекты бизнес-процессов.
- Объекты и процессы. Объекты представляют ресурсы, используемые в процессах (финансовые, материальные, человеческие, информационные).
Цели моделирования бизнес-процессов обычно формулируются следующим образом:
- обеспечить понимание структуры организации и динамики происходящих в ней процессов;
- обеспечить понимание текущих проблем организации и возможностей их решения;
- убедиться, что заказчики, пользователи и разработчики одинаково понимают цели и задачи организации;
- создать базу для формирования требований к ПО, автоматизирующему бизнес-процессы организации.
Основная область применения бизнес-моделей – это реинжиниринг бизнес-процессов. При этом предполагается построение моделей текущей и перспективной деятельности, а также плана и программы перехода из первого состояния во второе.
Любое современное предприятие является сложной системой, его деятельность включает в себя исполнение десятков тысяч взаимовлияющих функций и операций. Человек не в состоянии понимать, как такая система функционирует в деталях – это выходит за границы его возможностей. Поэтому главная идея создания так называемых моделей «AS-IS» (как есть) и «AS-TO-BE» (как должно быть) – понять, что делает (будет делать) рассматриваемое предприятие и как оно функционирует (будет функционировать) для достижения своих целей.
Назначением будущих систем ПО является, в первую очередь, решение проблем бизнеса посредством современных информационных технологий. Требования к ПО формируются на основе бизнес-модели, а критерии проектирования систем прежде всего основываются на наиболее полном их удовлетворении.
Следует отметить, что модели бизнес-процессов являются не просто промежуточным результатом, используемым консультантом для выработки каких-либо рекомендаций и заключений. Они представляют собой самостоятельный результат, имеющий большое практическое значение, которое следует из целей их построения.
Модель бизнес-процесса должна давать ответы на вопросы:
1. Какие процедуры (функции, работы) необходимо выполнить для получения заданного конечного результата?
2. В какой последовательности выполняются эти процедуры?
3. Какие механизмы контроля и управления существуют в рамках рассматриваемого бизнес-процесса?
4. Кто выполняет процедуры процесса?
5. Какие входящие документы/информацию использует каждая процедура процесса?
6. Какие исходящие документы/информацию генерирует процедура процесса?
7. Какие ресурсы необходимы для выполнения каждой процедуры процесса?
8. Какая документация/условия регламентирует выполнение процедуры?
9. Какие параметры характеризуют выполнение процедур и процесса в целом?
Важным элементом модели бизнес-процессов являются бизнес-правила или правила предметной области. Типичными бизнес-правилами являются корпоративная политика и государственные законы. Бизнес-правила обычно формулируются в специальном документе и могут отражаться в моделях. Для организации бизнес-правил предлагается множество различных схем классификации. Наиболее полной можно считать следующую классификацию бизнесправил (в скобках приведены примеры правил для гипотетической системы обработки заказов в торговой компании):
- Факты – достоверные утверждения о бизнес-процессах, называемые также инвариантами (оплачивается доставка каждого заказа; со стоимости доставки налог с продаж не берется).
- Правила-ограничения – определяют различные ограничения на выполняемые операции:
- Управляющие воздействия и реакции на воздействия (когда заказ отменен и еще не доставлен, то его обработка завершается).
- Операционные ограничения – предусловия и постусловия (доставить заказ клиенту только при наличии адреса доставки).
- Структурные ограничения (заказ включает по крайней мере один продукт).
- Активаторы операций – правила, при определенных условиях приводящие к выполнению каких-либо действий (если срок хранения товара на складе истек, об этом надо уведомить ответственное лицо).
- Правила вывода:
- Правила-следствия – правила, устанавливающие новые факты на основе достоверности определенных условий (клиент получает положительный статус только при условии оплаты счетов в течение 30 дней).
- Вычислительные правила – различные вычисления, выполняемые с использованием математических формул и алгоритмов (цена нетто = цена продукта * (1 + процент налога / 100)).
Для моделирования бизнес-процессов необходимо использовать определенную методику, которая включает:
- описание методов моделирования – способов представления реальных объектов предприятия при помощи объектов модели;
- процедуру – последовательность шагов по сбору информации, ее обработке и представлению в виде моделей (диаграмм и документов).
Методика может существовать как самостоятельный продукт (например, метод EricssonPenker [Eriksson-2000]) или входить в состав комплексной технологии создания ПО (например, метод моделирования бизнес-процессов в технологии Rational Unified Process).
3. Методы моделирования бизнес-процессов
Для моделирования бизнес-процессов используется несколько различных методов, основой которых являются как структурный, так и объектно-ориентированный подходы к моделированию. Однако деление самих методов на структурные и объектные является достаточно условным, поскольку наиболее развитые методы используют элементы обоих подходов. К числу наиболее распространенных методов относятся:
- метод функционального моделирования SADT (IDEF0);
- метод моделирования процессов IDEF3;
- моделирование потоков данных DFD;
- метод ARIS;
- метод Ericsson-Penker;
- метод моделирования, используемый в технологии Rational Unified Process.
3.1. Метод функционального моделирования SADT (IDEF0)
Метод SADT (Structured Analysis and Design Technique) [Марка-93, Черемных-01, Репин-04] считается классическим методом процессного подхода к управлению. Основной принцип процессного подхода заключается в структурировании деятельности организации в соответствии с ее бизнес-процессами, а не организационно-штатной структурой. Именно бизнес-процессы, формирующие значимый для потребителя результат, представляют ценность, и именно их улучшением предстоит в дальнейшем заниматься. Модель, основанная на организационно-штатной структуре, может продемонстрировать лишь хаос, царящий в организации (о котором в принципе руководству и так известно, иначе оно бы не инициировало соответствующие работы), на ее основе можно только внести предложения об изменении этой структуры. С другой стороны, модель, основанная на бизнес-процессах, содержит в себе и организационно-штатную структуру предприятия.
В соответствии с этим принципом бизнесмодель должна выглядеть следующим образом:
1. Верхний уровень модели должен отражать только контекст системы – взаимодействие моделируемого единственным контекстным процессом предприятия с внешним миром.
2. На втором уровне модели должны быть отражены основные виды деятельности (тематически сгруппированные бизнес-процессы) предприятия и их взаимосвязи. В случае большого их количества некоторые из них можно вынести на третий уровень модели. Но в любом случае под виды деятельности необходимо отводить не более двух уровней модели.
3. Дальнейшая детализация бизнес-процессов осуществляется посредством бизнес-функций – совокупностей операций, сгруппированных по определенным признакам. Бизнес-функции детализируются с помощью элементарных бизнес-операций.
4. Описание элементарной бизнес-операции осуществляется посредством задания алгоритма ее выполнения.
Метод SADT разработан Дугласом Россом (SoftTech, Inc.) в 1969 г. для моделирования искусственных систем средней сложности.
Данный метод успешно использовался в военных, промышленных и коммерческих организациях США для решения широкого круга задач, таких как долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, разработка ПО для оборонных систем, управление финансами и материально-техническим снабжением и др. Метод SADT поддерживается Министерством обороны США, которое было инициатором разработки семейства стандартов IDEF (Icam DEFinition), являющегося основной частью программы ICAM (интегрированная компьютеризация производства), проводимой по инициативе ВВС США. Метод SADT реализован в одном из стандартов этого семейства – IDEF0, который был утвержден в качестве федерального стандарта США в 1993 г., его подробные спецификации можно найти на сайте http://www.idef.com. Существует также российская версия данного стандарта [РД-2000]. Вместе со стандартом IDEF0 обычно используются стандарт моделирования процессов IDEF3 и стандарт моделирования данных IDEF1Х.
Метод SADT представляет собой совокупность правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями. Основные элементы этого метода основываются на следующих концепциях:
- Графическое представление блочного моделирования. Графика блоков и дуг SADT-диаграммы отображает функцию в виде блока, а интерфейсы входа/выхода представляются дугами, соответственно входящими в блок и выходящими из него. Взаимодействие блоков друг с другом описывается посредством интерфейсных дуг, выражающих «ограничения», которые, в свою очередь, определяют когда и каким образом функции выполняются и управляются.
- Строгость и точность. Выполнение правил SADT требует достаточной строгости и точности, не накладывая в то же время чрезмерных ограничений на действия аналитика. Правила SADT включают: ограничение количества блоков на каждом уровне декомпозиции (правило 3-6 блоков – ограничение мощности краткосрочной памяти человека), связность диаграмм (номера блоков), уникальность меток и наименований (отсутствие повторяющихся имен), синтаксические правила для графики (блоков и дуг), разделение входов и управлений (правило определения роли данных).
- Отделение организации от функции, т.е. исключение влияния административной структуры организации на функциональную модель.
Метод SADT может использоваться для моделирования самых разнообразных процессов и систем. В существующих системах метод SADT может быть использован для анализа функций, выполняемых системой, и указания механизмов, посредством которых они осуществляются.
3.1.1. Состав функциональной модели
Результатом применения метода SADT является модель, которая состоит из диаграмм, фрагментов текстов и глоссария, имеющих ссылки друг на друга. Диаграммы – главные компоненты модели, все функции организации и интерфейсы на них представлены как блоки и дуги соответственно. Место соединения дуги с блоком определяет тип интерфейса. Управляющая информация входит в блок сверху, в то время как входная информация, которая подвергается обработке, показана с левой стороны блока, а результаты (выход) показаны с правой стороны. Механизм (человек или автоматизированная система), который осуществляет операцию, представляется дугой, входящей в блок снизу (рис. 1).
Одной из наиболее важных особенностей метода SADT является постепенное введение все больших уровней детализации по мере создания диаграмм, отображающих модель.
На рис. 2, где приведены четыре диаграммы и их взаимосвязи, показана структура SADTмодели. Каждый компонент модели может быть декомпозирован на другой диаграмме. Каждая диаграмма иллюстрирует «внутреннее строение» блока на родительской диаграмме.
Построение SADT-модели заключается в выполнении следующих действий:
- сбор информации об объекте, определение его границ;
- определение цели и точки зрения модели;
- построение, обобщение и декомпозиция диаграмм;
- критическая оценка, рецензирование и комментирование.
Построение диаграмм начинается с представления всей системы в виде простейшего компонента – одного блока и дуг, изображающих интерфейсы с функциями вне системы. Поскольку единственный блок отражает систему как единое целое, имя, указанное в блоке, является общим. Это верно и для интерфейсных дуг – они также соответствуют полному набору внешних интерфейсов системы в целом.
Затем блок, который представляет систему в качестве единого модуля, детализируется на другой диаграмме с помощью нескольких блоков, соединенных интерфейсными дугами. Эти блоки определяют основные подфункции исходной функции. Данная декомпозиция выявляет полный набор подфункций, каждая из которых показана как блок, границы которого определены интерфейсными дугами. Каждая из этих подфункций может быть декомпозирована подобным образом в целях большей детализации.
Во всех случаях каждая подфункция может содержать только те элементы, которые входят в исходную функцию. Кроме того, модель не может опустить какие-либо элементы, т.е., как уже отмечалось, родительский блок и его интерфейсы обеспечивают контекст. К нему нельзя ничего добавить, и из него не может быть ничего удалено.
Модель SADT представляет собой серию диаграмм с сопроводительной документацией, разбивающих сложный объект на составные части, которые изображены в виде блоков. Детали каждого из основных блоков показаны в виде блоков на других диаграммах. Каждая детальная диаграмма является декомпозицией блока из диаграммы предыдущего уровня. На каждом шаге декомпозиции диаграмма предыдущего уровня называется родительской для более детальной диаграммы.
На SADT-диаграммах не указаны явно ни последовательность, ни время. Обратные связи, итерации, продолжающиеся процессы и перекрывающиеся (по времени) функции могут быть изображены с помощью дуг. Обратные связи могут выступать в виде комментариев, замечаний, исправлений и т.д.
3.1.2. Стратегии декомпозиции
При построении иерархии диаграмм используются следующие стратегии декомпозиции:
- Функциональная декомпозиция – декомпозиция в соответствии с функциями, которые выполняют люди или организация. Может оказаться полезной стратегией для создания системы описаний, фиксирующей взаимодействие между людьми в процессеих работы. Очень часто, однако, взаимосвязи между функциями весьма многочисленны и сложны, поэтому рекомендуется использовать эту стратегию только в начале работы над моделью системы.
- Декомпозиция в соответствии с известными стабильными подсистемами – приводит к созданию набора моделей, по одной модели на каждую подсистему или важный компонент. Затем для описания всей системы должна быть построена составная модель, объединяющая все отдельные модели. Рекомендуется использовать разложение на подсистемы, только когда разделение на основные части системы не меняется. Нестабильность границ подсистем быстро обесценит как отдельные модели, так и их объединение.
- Декомпозиция по физическому процессу – выделение функциональных стадий, этапов завершения или шагов выполнения. Хотя эта стратегия полезна при описании существующих процессов (таких, например, как работа промышленного предприятия), результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Эта стратегия рекомендуется только если целью модели является описание физического процесса как такового или только в крайнем случае, когда неясно, как действовать.
Одна из наиболее частых проблем, возникающих в процессе построения SADT-моделей, – когда же следует завершить построение конкретной модели? На этот вопрос не всегда легко ответить, хотя существуют некоторые эвристики для определения разумной степени полноты. Здесь представлены правила, которыми пользуются опытные аналитики для определения момента завершения моделирования. Они носят характер рекомендаций. Только длительная практика позволит приобрести знания, необходимые для принятия правильного решения об окончании моделирования.
Рекомендуется прекращать моделирование, когда уровень детализации модели удовлетворяет ее цель. Опыт показал, что для отдельной модели, которая создается независимо от какой-либо другой модели, декомпозиция одного из ее блоков должна прекращаться, если:
- Блок содержит достаточно деталей. Одна из типичных ситуаций, встречающихся в конце моделирования – это блок, который описывает систему с нужным уровнем подробности. Проверить достаточность деталей обычно совсем легко, необходимо просто спросить себя, отвечает ли блок на все или на часть вопросов, составляющих цель модели. Если блок помогает ответить на один или более вопросов, то дальнейшая декомпозиция может не понадобиться.
- Необходимо изменить уровень абстракции, чтобы достичь большей детализации, блока. Блоки подвергаются декомпозиции, если они недостаточно детализированы для удовлетворения цели модели. Но иногда при декомпозиции блока выясняется, что диаграмма начинает описывать, как функционирует блок, вместо описания того, что блок делает. В этом случае происходит изменение уровня абстракции – изменение сути того, что должна представлять модель (т.е. изменение способа описания системы). В SADT изменение уровня абстракции часто означает выход за пределы цели модели и, следовательно, это указывает на прекращение декомпозиции.
- Необходимо изменить точку зрения, чтобы детализировать блок. Изменение точки зрения происходит примерно так же, как изменение уровня абстракции. Это чаще всего характерно для ситуаций, когда точку зрения модели нельзя использовать для декомпозиции конкретного блока, т. е. этот блок можно декомпозировать, только если посмотреть на него с другой позиции. Об этом может свидетельствовать заметное изменение терминологии.
- Блок очень похож на другой блок той же модели или на блок другой модели. Иногда встречается блок, чрезвычайно похожий на другой блок модели. Два блока похожи, если они выполняют примерно одну и ту же функцию и имеют почти одинаковые по типу и количеству входы, управления и выходы. Если второй блок уже декомпозирован, то разумно отложить декомпозицию и тщательно сравнить два блока. Если нужны ничтожные изменения для совпадения первого блока со вторым, то внесение этих изменений сократит усилия на декомпозицию и улучшит модульность модели (т.е. сходные функции уточняются согласованным образом).
- Блок представляет тривиальную функцию. Тривиальная функция – это такая функция, понимание которой не требует никаких объ-яснений. В этом случае очевидна целесообразность отказа от декомпозиции, потому что роль SADT заключается в превращении сложного вопроса в понятный, а не в педантичной разработке очевидных деталей. В таких случаях декомпозиция определенных блоков может принести больше вреда, чем пользы. Тривиальные функции лучше всего описываются небольшим объемом текста. Следует заметить, что «тривиальный» не означает «бесполезный». Тривиальные функции выполняют очень важную роль, поясняя работу более сложных функций, а иногда и соединяя вместе основные подсистемы. Поэтому при анализе не следует пропускать тривиальные функции. Наоборот, их существование должно быть зафиксировано и они должны быть детализированы, как и любые другие функции. Однако следует предостеречь от больших затрат времени на анализ тривиальных функций системы. Усиленное внимание к мелочам может привести к созданию модели, которой будет недоставать абстракции, что сделает ее трудной для понимания и использования.
Общее число уровней в модели (включая контекстный) не должно превышать 5-6. Практика показывает, что этого вполне достаточно для построения полной функциональной модели современного предприятия любой отрасли.
Метод SADT в наибольшей степени подходит для описания процессов верхнего уровня управления. Его основные преимущества заключаются в следующем [Репин-04]:
- полнота описания бизнес-процесса (управление, информационные и материальные потоки, обратные связи);
- комплексность декомпозиции;
- возможность агрегирования и детализации потоков данных и информации (разделение и слияние дуг);
- наличие жестких требований, обеспечивающих получение моделей стандартного вида; • простота документирования процессов;
- соответствие подхода к описанию процессов стандарту ISO 9000:2000.
В то же время метод SADT обладает рядом недостатков:
- сложность восприятия (большое количество дуг на диаграммах);
- большое количество уровней декомпозиции;
- трудность увязки нескольких процессов, представленных в различных моделях одной и той же организации.
3.2. Метод моделирования процессов IDEF3
Метод моделирования IDEF3 [Черемных-01, Репин-04], являющийся частью семейства стандартов IDEF, был разработан в конце 1980-х годов для закрытого проекта ВВС США. Этот метод предназначен для моделирования последовательности выполнения действий и взаимозависимости между ними в рамках процессов. Хотя IDEF3 и не достиг статуса федерального стандарта США, он приобрел широкое распространение среди системных аналитиков как дополнение к методу функционального моделирования IDEF0 (модели IDEF3 могут использоваться для детализации функциональных блоков IDEF0, не имеющих диаграмм декомпозиции).
Основой модели IDEF3 служит так называемый сценарий процесса, который выделяет последовательность действий и подпроцессов анализируемой системы.
Как и в методе IDEF0, основной единицей модели IDEF3 является диаграмма. Другой важный компонент модели – действие, или в терминах IDEF3 «единица работы» (Unit of Work). Диаграммы IDEF3 отображают действие в виде прямоугольника. Действия именуются с использованием глаголов или отглагольных существительных, каждому из действий присваивается уникальный идентификационный номер. Этот номер не используется вновь даже в том случае, если в процессе построения модели действие удаляется. В диаграммах IDEF3 номер действия обычно предваряется номером его родителя (рис. 3).
Существенные взаимоотношения между действиями изображаются с помощью связей. Все связи в IDEF3 являются однонаправленными, и хотя стрелка может начинаться или заканчиваться на любой стороне блока, обозначающего действие, диаграммы IDEF3 обычно организуются слева направо таким образом, что стрелки начинаются на правой и заканчиваются на левой стороне блоков. В табл. 1 приведены три возможных типа связей.
Связь типа «временное предшествование» показывает, что исходное действие должно полностью завершиться, прежде чем начнется выполнение конечного действия.
Связь типа «объектный поток» используется в том случае, когда некоторый объект, являющийся результатом выполнения исходного действия, необходим для выполнения конечного действия. Обозначение такой связи отличается от связи временного предшествования двойной стрелкой. Наименования потоковых связей должны четко идентифицировать объект, который передается с их помощью. Временная семантика объектных связей аналогична связям предшествования, это означает, что порождающее объектную связь исходное действие должно завершиться, прежде чем конечное действие может начать выполняться.
Связь типа «нечеткое отношение» используется для выделения отношений между действиями, которые невозможно описать с использованием связей предшествования или объектных связей. Значение каждой такой связи должно быть определено, поскольку связи типа «нечеткое отношение» сами по себе не предполагают никаких ограничений. Одно из применений нечетких отношений – отображение взаимоотношений между параллельно выполняющимися действиями.
Завершение одного действия может инициировать начало выполнения сразу нескольких других действий или, наоборот, определенное действие может требовать завершения нескольких других действий до начала своего выполнения. Соединения разбивают или соединяют внутренние потоки и используются для изображения ветвления процесса:
- разворачивающие соединения используются для разбиения потока. Завершение одного действия вызывает начало выполнения нескольких других;
- сворачивающие соединения объединяют потоки. Завершение одного или нескольких действий вызывает начало выполнения другого действия.
Соединения «и» инициируют выполнение конечных действий. Все действия, присоединенные к сворачивающему соединению «и», должны завершиться, прежде чем начнется выполнение следующего действия. На рис. 4 после обнаружения пожара инициируются включение пожарной сигнализации, вызов пожарной охраны, и начинается тушение пожара. Запись в журнал производится только тогда, когда все три перечисленных действия завершены.
Соединение «исключающее «или»» означает, что вне зависимости от количества действий, связанных со сворачивающим или разворачивающим соединением, инициировано будет только одно из них, и поэтому только оно будет завершено перед тем, как любое действие, следующее за сворачивающим соединением, сможет начаться. Если правила активации соединения известны, они обязательно должны быть документированы либо в его описании, либо пометкой стрелок, исходящих из разворачивающего соединения. На рис. 5 соединение «исключающее «или»» используется для отображения того факта, что студент не может одновременно быть направлен на лекции по двум разным курсам.
Соединение «или» предназначено для описания ситуаций, которые не могут быть описаны двумя предыдущими типами соединений.
Аналогично связи нечеткого отношения соединение «или» в основном определяется и описывается непосредственно аналитиком. На рис. 6 соединение J2 может активизировать проверку данных чека и/или проверку суммы наличных. Проверка чека инициируется, если покупатель желает расплатиться чеком, проверка суммы наличных – при оплате наличными. И то, и другое действие инициируются при частичной оплате как чеком, так и наличными.
В рассмотренных примерах все действия выполнялись асинхронно, т.е. они не инициировались одновременно. Однако существуют случаи, когда время начала или окончания параллельно выполняемых действий должно быть одинаковым, т.е. действия должны выполняться синхронно. Для моделирования такого поведения системы используются различные виды синхронных соединений, которые обозначаются двумя двойными вертикальными линиями внутри прямоугольника.
Все соединения на диаграммах должны быть парными, из чего следует, что любое разворачивающее соединение имеет парное себе сворачивающее. Однако типы соединений не обязательно должны совпадать.
Соединения могут комбинироваться для создания более сложных ветвлений. Комбинации соединений следует использовать с осторожностью, поскольку перегруженные ветвлением диаграммы могут оказаться сложными для восприятия.
Действия в IDEF3 могут быть декомпозированы или разложены на составляющие для более детального анализа. Метод IDEF3 позволяет декомпозировать действие несколько раз, что обеспечивает документирование альтернативных потоков процесса в одной модели.
3.3. Моделирование потоков данных
Диаграммы потоков данных (Data Flow Diagrams – DFD) [Калашян-03] представляют собой иерархию функциональных процессов, связанных потоками данных. Цель такого представления – продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявитьотношениямеждуэтимипроцессами.
Для построения DFD традиционно используются две различные нотации, соответствующие методам Йордона-ДеМарко и Гейна-Сэрсона. Эти нотации незначительно отличаются друг от друга графическим изображением символов (далее в примерах используется нотация ГейнаСэрсона).
В соответствии с данным методом модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи потребителю. Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям – потребителям информации.
Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут уровень декомпозиции, на котором детализировать процессы далее не имеет смысла.
3.3.1. Состав диаграмм потоков данных
Основными компонентами диаграмм потоков данных являются:
- внешние сущности;
- системы и подсистемы;
- процессы;
- накопители данных;
- потоки данных.
Внешняя сущность представляет собой материальный объект или физическое лицо, являющиеся источником или приемником информации, например, заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.
Внешняя сущность обозначается квадратом (рис. 7), расположенным над диаграммой и бросающим на нее тень для того, чтобы можно было выделить этот символ среди других обозначений.
При построении модели сложной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем.
Подсистема (или система) на контекстной диаграмме изображается так, как она представлена на рис. 8.
Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями.
Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д.
Процесс на диаграмме потоков данных изображается, как показано на рис. 9.
Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже, например: «Ввести сведения о налогоплательщиках», «Выдать информацию о текущих расходах», «Проверить поступление денег».
Информация в поле физической реализации показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.
Накопитель данных – это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми.
Накопитель данных может быть реализован физически в виде микрофиши, ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных изображается, как показано на рис. 10.
Накопитель данных идентифицируется буквой «D» и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.
Накопитель данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно соответствовать модели данных.
Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.
Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока (рис. 11). Каждый поток данных имеет имя, отражающее его содержание.
3.3.2. Построение иерархии диаграмм потоков данных
Главная цель построения иерархии DFD заключается в том, чтобы сделать описание системы ясным и понятным на каждом уровне детализации, а также разбить его на части с точно определенными отношениями между ними. Для достижения этого целесообразно пользоваться следующими рекомендациями:
- Размещать на каждой диаграмме от 3 до 6-7 процессов (аналогично SADT). Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана по соображениям здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса.
- Не загромождать диаграммы несущественными на данном уровне деталями.
- Декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов. Эти две работы должны выполняться одновременно, а не одна после завершения другой.
- Выбирать ясные, отражающие суть дела имена процессов и потоков, при этом стараться не использовать аббревиатуры.
Первым шагом при построении иерархии DFD является построение контекстных диаграмм. Обычно при проектировании относительно простых систем строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Перед построением контекстной DFD необходимо проанализировать внешние события (внешние сущности), оказывающие влияние на функционирование системы. Количество потоков на контекстной диаграмме должно быть по возможности небольшим, поскольку каждый из них может быть в дальнейшем разбит на несколько потоков на следующих уровнях диаграммы.
Для проверки контекстной диаграммы можно составить список событий. Список событий должен состоять из описаний действий внешних сущностей (событий) и соответствующих реакций системы на события. Каждое событие должно соответствовать одному или более потокам данных: входные потоки интерпретируются как воздействия, а выходные потоки – как реакции системы на входные потоки.
Для сложных систем (признаками сложности могут быть наличие большого количества внешних сущностей (десять и более), распределенная природа системы или ее многофункциональность) строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.
Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Это можно сделать путем построения диаграммы для каждого события. Каждое событие представляется в виде процесса с соответствующими входными и выходными потоками, накопителями данных, внешними сущностями и ссылки на другие процессы для описания связей между этим процессом и его окружением. Затем все построенные диаграммы сводятся в одну диаграмму нулевого уровня.
Каждый процесс на DFD, в свою очередь, может быть детализирован при помощи DFD или (если процесс элементарный) спецификации. Спецификация процесса должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.
Спецификация является конечной вершиной иерархии DFD. Решение о завершении детализации процесса и использовании спецификации принимается аналитиком исходя из следующих критериев:
- наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока);
- возможности описания преобразования данных процессов в виде последовательного алгоритма;
- выполнения процессом единственной логической функции преобразования входной информации в выходную;
- возможности описания логики процесса при помощи спецификации небольшого объема (не более 20-30 строк).
Спецификации представляют собой описания алгоритмов задач, выполняемых процессами. Они содержат номер и/или имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Языки спецификаций могут варьироваться от структурированного естественного языка или псевдокода до визуальных языков моделирования.
Структурированный естественный язык применяется для понятного, достаточно строгого описания спецификаций процессов. При его использовании приняты следующие соглашения:
- логика процесса выражается в виде комбинации последовательных конструкций, конструкций выбора и итераций;
- глаголы должны быть активными, недвусмысленными и ориентированными на целевое действие (заполнить, вычислить, извлечь, а не модернизировать, обработать);
- логика процесса должна быть выражена четко и недвусмысленно.
При построении иерархии DFD переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Для каждого потока данных формируется список всех его элементов данных, затем элементы данных объединяются в структуры данных, соответствующие более крупным объектам данных (например, строкам документов или объектам предметной области). Каждый объект должен состоять из элементов, являющихся его атрибутами. Структуры данных могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре (например, структура «данные о страховании» для объекта «служащий»). Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне (например, элемент «имя ребенка» для объекта «служащий»). Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных могут указываться единица измерения, диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.
После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы.
Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.
При моделировании бизнес-процессов диаграммы потоков данных (DFD) используются для построения моделей «AS-IS» и «AS-TO-BE», отражая, таким образом, существующую и предлагаемую структуру бизнес-процессов организации и взаимодействие между ними. При этом описание используемых в организации данных на концептуальном уровне, независимом от средств реализации базы данных, выполняется с помощью модели «сущность-связь».
Ниже перечислены основные виды и последовательность работ при построении бизнесмоделей с использованием методики Йордона:
1. Описание контекста процессов и построение начальной контекстной диаграммы. Начальная контекстная диаграмма потоков данных должна содержать нулевой процесс с именем, отражающим деятельность организации, внешние сущности, соединенные с нулевым процессом посредством потоков данных. Потоки данных соответствуют документам, запросам или сообщениям, которыми внешние сущности обмениваются с организацией.
2. Спецификация структур данных. Определяется состав потоков данных и готовится исходная информация для построения концептуальной модели данных в виде структур данных. Выделяются все структуры и элементы данных типа «итерация», «условное вхождение» и «альтернатива». Простые структуры и элементы данных объединяются в более крупные структуры. В результате для каждого потока данных должна быть сформирована иерархическая (древовидная) структура, конечные элементы (листья) которой являются элементами данных, узлы дерева являются структурами данных, а верхний узел дерева соответствует потоку данных в целом.
3. Построение начального варианта концептуальной модели данных.Для каждого класса объектов предметной области выделяется сущность. Устанавливаются связи между сущностями и определяются их характеристики. Строится диаграмма «сущность-связь» (без атрибутов сущностей).
4. Построение диаграмм потоков данных нулевого и последующих уровней.
Для завершения анализа функционального аспекта деятельности организации детализируется (декомпозируется) начальная контекстная диаграмма. При этом можно построить диаграмму для каждого события, поставив ему в соответствие процесс и описав входные и выходные потоки, накопители данных, внешние сущности и ссылки на другие процессы для описания связей между этим процессом и его окружением. После этого все построенные диаграммы сводятся в одну диаграмму нулевого уровня.
Процессы разделяются на группы, которые имеют много общего (работают с одинаковыми данными и/или имеют сходные функции). Они изображаются вместе на диаграмме более низкого (первого) уровня, а на диаграмме нулевого уровня объединяются в один процесс. Выделяются накопители данных, используемые процессами из одной группы.
Декомпозируются сложные процессы и проверяется соответствие различных уровней модели процессов.
Накопители данных описываются посредством структур данных, а процессы нижнего уровня – посредством спецификаций.
5. Уточнение концептуальной модели данных. Определяются атрибуты сущностей. Выделяются атрибуты-идентификаторы.
Проверяются связи, выделяются (при необходимости) связи «супертип-подтип». Проверяется соответствие между описанием структур данных и концептуальной моделью (все элементы данных должны присутствовать на диаграмме в качестве атрибутов).
3.4. Метод ARIS
В настоящее время наблюдается тенденция интеграции разнообразных методов моделирования и анализа систем, проявляющаяся в форме создания интегрированных средств моделирования. Одним из таких средств является продукт, носящий название ARIS (Architecture of Integrated Information System), разработанный германской фирмой IDS Scheer [Каменнова-01, Репин-04].
Система ARIS представляет собой комплекс средств анализа и моделирования деятельности предприятия. Ее методическую основу составляет совокупность различных методов моделирования, отражающих разные взгляды на исследуемую систему. Одна и та же модель может разрабатываться с использованием нескольких методов, что позволяет использовать ARIS специалистам с различными теоретическими знаниями и настраивать его на работу с системами, имеющими свою специфику.
Методика моделирования ARIS основывается на разработанной профессором Августом Шером теории построения интегрированных ИС, определяющей принципы визуального отображения всех аспектов функционирования анализируемых компаний. ARIS поддерживает четыре типа моделей, отражающих различные аспекты исследуемой системы:
- организационные модели, представляющие структуру системы – иерархию организационных подразделений, должностей и конкретных лиц, связи между ними, а также территориальную привязку структурных подразделений;
- функциональные модели, содержащие иерархию целей, стоящих перед аппаратом управления, с совокупностью деревьев функций, необходимых для достижения поставленных целей;
- информационные модели, отражающие структуру информации, необходимой для реализации всей совокупности функций системы;
- модели управления, представляющие комплексный взгляд на реализацию бизнеспроцессов в рамках системы.
Для построения перечисленных типов моделей используются как собственные методы моделирования ARIS, так и различные известные методы и языки моделирования, в частности, UML.
В процессе моделирования каждый аспект деятельности предприятия сначала рассматривается отдельно, а после детальной проработки всех аспектов строится интегрированная модель, отражающая все связи между различными аспектами.
ARIS не накладывает ограничений на последовательность построения указанных выше типов моделей. Процесс моделирования можно начинать с любого из них, в зависимости от конкретных условий и целей, преследуемых разработчиками.
Модели в ARIS представляют собой диаграммы, элементами которых являются разнообразные объекты – «функция», «событие», «структурное подразделение», «документ» и т.п. Между объектами устанавливаются разнообразные связи. Так, между объектами «функция» и «структурное подразделение» могут быть установлены связи следующих видов:
- выполняет;
- принимает решение;
- участвует в выполнении;
- должен быть проинформирован о результатах;
- консультирует исполнителей;
- принимает результаты.
Каждому объекту соответствует определенный набор атрибутов, которые позволяют ввести дополнительную информацию о конкретном объекте. Значения атрибутов могут использоваться при имитационном моделировании или для проведения стоимостного анализа.
Таким образом, по результатам выполнения этого этапа возникает набор взаимосвязанных моделей, представляющих собой исходный материал для дальнейшего анализа.
Основная бизнес-модель ARIS – eEPC (extended Event-driven Process Chain – расширенная модель цепочки процессов, управляемых событиями). В табл. 2 приводятся основные объекты, используемые в данной нотации.
Помимо указанных в таблице основных объектов, при построении диаграммы eEPC могут быть использованы многие другие объекты. По существу, модель eEPC расширяет возможности IDEF0, IDEF3 и DFD, обладая всеми их достоинствами и недостатками. Применение большого числа различных объектов, связанных различными типами связей, значительно увеличивает размер модели и делает ее плохо читаемой. Для понимания смысла нотации eEPC достаточно рассмотреть основные типы объектов и связей. На рис. 12 представлена простейшая модель eEPC, описывающая фрагмент бизнес-процесса предприятия.
На рис. 12 видно, что связи между объектами имеют определенный смысл и отражают последовательность выполнения функций в рамках процесса. Стрелка, соединяющая Событие 1 и Функцию 1, «активирует» или инициирует выполнение Функции 1. Функция 1 «создает» Событие 2, за которым следует символ логического «И», «запускающий» выполнение Функций 2 и 3. Нотация eEPC построена на определенных правилах:
- каждая функция должна быть инициирована событием и должна завершаться событием;
- в каждую функцию не может входить более одной стрелки, «запускающей» выполнение функции, и выходить не более одной стрелки, описывающей завершение выполнения функции.
На рис. 13 показано применение различных объектов ARIS при создании модели бизнес-процесса.
Из рис. 12 и 13 видно, что бизнес-процесс в нотации eEPC представляет собой поток последовательно выполняемых работ (процедур, функций), расположенных в порядке их выполнения. Реальная длительность выполнения процедур в eEPC визуально не отражается. Это приводит к тому, что при создании моделей возможны ситуации, когда на одного исполнителя будет возложено выполнение двух задач одновременно. Используемые при построении модели символы логики позволяют отразить ветвление и слияние бизнес-процесса. Для получения информации о реальной длительности процессов необходимо использовать другие инструменты описания, например, графики Ганта в системе MS Project.
Основное достоинство метода ARIS заключается в его комплексности, которая проявляется во взаимосвязи между моделями различных типов. Метод ARIS позволяет описывать деятельность организации с разных точек зрения и устанавливать связи между различными моделями. Однако такой подход трудно реализуем на практике, поскольку влечет за собой большой расход ресурсов (человеческих и финансовых) в течение длительного времени. Кроме того, инструментальная среда ARIS достаточно дорогостояща и сложна в использовании.
3.5. Метод Ericsson-Penker и образцы моделирования бизнес-процессов
Метод Ericsson-Penker [Eriksson-2000] представляет интерес прежде всего в связи с попыткой применения языка объектного моделирования UML [Буч-2000] (изначально предназначенного для моделирования архитектуры систем ПО) для моделирования бизнес-процессов. Это стало возможным благодаря наличию в UML механизмов расширения.
Механизмы расширения UML предназначены для того, чтобы разработчики могли адаптировать язык моделирования к своим конкретным нуждам, не меняя при этом его метамодель.
Наличие механизмов расширения принципиально отличает UML от таких средств моделирования, как IDEF0, IDEF1X, IDEF3, DFD и др. Перечисленные языки моделирования можно определить как сильно типизированные (по аналогии с языками программирования), поскольку они не допускают произвольной интерпретации семантики элементов моделей. UML, допуская такую интерпретацию (в основном за счет стереотипов), является слабо типизированным языком. К его механизмам расширения относятся:
- стереотипы;
- тегированные (именованные) значения;
- ограничения.
Стереотип – это новый тип элемента модели, который определяется на основе уже существующего элемента. Стереотипы расширяют нотацию модели, могут применяться к любым элементам модели и представляются в виде текстовой метки или пиктограммы. Стереотипы классов – это механизм, позволяющий разделять классы на категории. Участники проекта (аналитики) могут создавать свои собственные наборы стереотипов, формируя тем самым специализированные подмножества UML (например, для описания бизнес-процессов, Web-приложений, баз данных и т.д.). Такие подмножества (наборы стереотипов) в стандарте языка UML носят название профилей языка.
Именованное значение – это пара строк «тег = значение» или «имя = содержимое», в которых хранится дополнительная информация о каком-либо элементе системы, например, время создания, статус разработки или тестирования, время окончания работы над ним и т.п.
Ограничение – это семантическое ограничение, имеющее вид текстового выражения на естественном или формальном языке (OCL – Object Constraint Language), которое невозможно выразить с помощью графической нотации UML.
Авторы метода Ericsson-Penker создали свой профиль UML для моделирования бизнеспроцессов под названием Ericsson-Penker Business Extensions, введя набор стереотипов, описывающих процессы, ресурсы, правила и цели деятельности организации.
Метод использует четыре основные категории бизнес-модели:
- Ресурсы – различные объекты, используемые или участвующие в бизнес-процессах (люди, материалы, информация или продукты). Ресурсы структурированы, взаимосвязаны и подразделяются на физические, абстрактные, информационные и человеческие.
- Процессы – виды деятельности, изменяющие состояние ресурсов в соответствии с бизнес-правилами.
- Цели – назначение бизнес-процессов. Цели могут быть разбиты на подцели и соотнесены с отдельными процессами. Цели достигаются в процессах и выражают требуемое состояние ресурсов. Цели могут быть выражены в виде одного или более правил.
- Бизнес-правила – условия или ограничения выполнения процессов (функциональные, поведенческие или структурные).
Правила могут диктоваться внешней средой (инструкциями или законами) или могут быть определены в пределах бизнес-процессов. Правила могут быть определены с использованием языка OCL, который является частью стандарта UML.
Все эти категории связаны между собой: правило может определять способ структурирования ресурсов, ресурс назначается конкретному процессу, цель связана с выполнением конкретного процесса. Метамодель, определяющая связи между категориями, приведена на рис. 14.
Основной диаграммой UML, используемой в данном методе, является диаграмма деятельности (рис. 15).
Основным элементом диаграммы является деятельность (activity). Интерпретация этого термина зависит от той точки зрения, с которой строится диаграмма (это может быть некоторая задача, которую необходимо выполнить вручную или автоматизированным способом, или операция класса). Деятельность изображается в виде закругленного прямоугольника с текстовым описанием.
Любая диаграмма деятельности должна иметь начальную точку, определяющую начало потока событий. Конечная точка необязательна. На диаграмме может быть несколько конечных точек, но только одна начальная.
На диаграмме могут присутствовать объекты и потоки объектов (object flow). Объект может использоваться или изменяться в одной из деятельностей. Показ объектов и их состояний (в дополнение к диаграммам состояний UML) помогает понять, когда и как происходит смена состояний объекта.
Объекты связаны с деятельностями через потоки объектов. Поток объектов отмечается пунктирной стрелкой от деятельности к изменяемому объекту или от объекта к деятельности, использующей объект.
В примере на рис. 15 после ввода пользователем информации о кредитной карточке билет переходит в состояние «не подтвержден».
Когда завершится процесс обработки кредитной карточки и будет подтвержден перевод денег, возникает деятельность «зарезервировать место», переводящая билет в состояние «приобретен», и затем он используется в деятельности «формирование номера подтверждения».
Переход (стрелка) показывает, как поток управления переходит от одной деятельности к другой. Если для перехода определено событие, то переход выполняется только после наступления такого события. Ограничивающие условия определяют, когда переход может, а когда не может осуществиться.
Если необходимо показать, что две или более ветвей потока выполняются параллельно, используются линейки синхронизации. В данном примере параллельно выполняются резервирование места, формирование номера подтверждения и отправка почтового сообщения, а после завершения всех трех процессов пользователю выводится номер подтверждения.
Любая деятельность может быть подвергнута дальнейшей декомпозиции. Описание декомпозированной деятельности может быть представлено в виде другой диаграммы деятельности.
Подобно большинству других средств, моделирующих поведение некоторых объектов, диаграммы деятельности отражают только вполне определенные его аспекты, поэтому их лучше всего использовать в сочетании с другими средствами.
Бизнес-процесс в самом простом виде может быть описан как множество деятельностей. Метод Eriksson-Penker представляет образец процесса на диаграмме деятельности (рис. 16) в виде деятельности со стереотипом «process» (в качестве основы данного образца использовано представление процесса в методе IDEF0, расширенное за счет введения цели процесса). Процесс использует входные ресурсы и формирует выходные ресурсы, показанные в виде объектов со стереотипом «resourse», соединенных с процессом связями зависимости. Ресурсы, играющие в методе IDEF0 роли «управления» и «механизма», также соединены с процессом связями зависимости со стереотипами «supply» и «control». Цель процесса показана как объект со стереотипом «goal».
Полная бизнес-модель включает множество представлений. Каждое представление выражено в одной или более диаграммах. Диаграммы могут иметь различные типы и изображать процессы, правила, цели и ресурсы во взаимодействиях друг с другом.
Метод Eriksson-Penker использует четыре различных представления бизнес-модели:
- концептуальное представление – структура целей и проблем (дерево целей, представленное в виде диаграммы объектов);
- представление процессов – взаимодействие между процессами и ресурсами (в виде набора диаграмм деятельности);
- структурное представление – структура организации и ресурсов (в виде диаграмм классов);
- представление поведения – поведение отдельных ресурсов и детализация процессов (в виде диаграмм деятельности, состояний и взаимодействия).
Метод Ericsson-Penker активно использует набор образцов моделирования бизнес-процессов. Образец (pattern) можно определить как общее решение некоторой проблемной ситуации в заданном контексте. Образец состоит из четырех основных элементов:
- имя;
- проблема;
- решение;
- следствия.
Сославшись на имя образца, можно сразу описать проблему, ее решения и их последствия. С помощью словаря образцов можно вести обсуждение с коллегами, упоминать образцы в документации, в тонкостях представлять проект системы.
Проблема – это описание решаемой задачи. Необходимо сформулировать задачу и ее контекст. Также может включаться перечень условий, при выполнении которых имеет смысл применять данный образец.
Решение – это описание элементов решения, связей между ними и функций каждого элемента. Конкретное решение или реализация не имеются в виду, поскольку образец – это шаблон, применимый в самых разных ситуациях. Обычно дается абстрактное описание задачи и того, как она может быть решена с помощью некоего весьма обобщенного сочетания элементов (классов и объектов).
Следствия – это описание области применения, достоинств и недостатков образца. Хотя при описании решений о следствиях часто не упоминают, знать о них необходимо, чтобы можно было выбрать между различными вариантами и оценить преимущества и недостатки применения данного образца.
В языке UML образец представляется с помощью кооперации со стереотипом «pattern». Кооперация (collaboration) определяется как описание совокупности взаимодействующих объектов, реализующих некоторое поведение (например, в рамках варианта использования или операции класса). Кооперация имеет статическую и динамическую части. В статической части (на диаграмме классов) описываются роли, которые могут играть объекты и связи в экземпляре данной кооперации. Динамическая часть состоит из одной или более диаграмм взаимодействия, показывающих потоки сообщений, которыми обмениваются участники кооперации. Кроме того, любой образец содержит стандартную диаграмму классов под названием «Participants» («Участники»), на которой изображается сам образец в виде кооперации с его именем и набор классов, участвующих в реализации образца.
В качестве примера приведем образец бизнес-моделирования под названием Employment (Занятость).
Проблема заключается в моделировании различных форм занятости в пределах организации. Данная задача решается в контексте системы планирования ресурсов предприятия.
Решение: занятость моделируется как контракт между личностью и организацией, указывающий выполняемые обязанности, контрактные условия, даты начала и конца работы. Личность характеризуется набором атрибутов (имя, адрес и дата рождения), может занимать более чем одну должность в одной и той же организации.
На рис. 17 приведена диаграмма «Участники» для данного образца (примеры моделей здесь и далее приводятся в среде CASE-средства Rational Rose). Она содержит кооперацию Employment и набор из пяти классов:
- Employee Profile (Служащий) – описание служащего с набором атрибутов.
- Organization Profile (Организация) – описание самой организации.
- Employment (Занятость) – описание связи между служащим и организацией.
- Position (Должность) – описание должности со своими атрибутами (такими, как должностной оклад и должностные инструкции).
- Position Assignment (Назначение на должность) – описание связи между служащим и занимаемыми должностями.
Статическая часть образца (диаграмма классов) показана на рис. 18.
3.6. Метод моделирования, используемый в технологии Rational Unified Process
Язык UML используется также в методе моделирования бизнес-процессов, являющемся частью технологии Rational Unified Process [Крачтен-02] компании IBM Rational Software. Этот метод, направленный прежде всего на создание основы для формирования требований к ПО, предусматривает построение двух базовых моделей:
- модели бизнес-процессов (Business Use Case Model);
- модели бизнес-анализа (Business Analysis Model).
Модель бизнес-процессов – модель, описывающая бизнес-процессы организации в терминах ролей и их потребностей. Она представляет собой расширение модели вариантов использования (use case) UML [Коберн-02] за счет введения набора стереотипов – Business Actor (стереотип действующего лица) и Business Use Case (стереотип варианта использования).
Business Actor (действующее лицо бизнеспроцессов) – это некоторая роль, внешняя по отношению к бизнес-процессам организации. Потенциальными кандидатами в действующие лица бизнес-процессов являются:
- акционеры;
- заказчики;
- поставщики;
- партнеры;
- потенциальные клиенты;
- местные органы власти;
- сотрудники подразделений организации, деятельность которых не охвачена моделью;
- внешние системы.
Список действующих лиц составляется путем ответа на следующие вопросы:
- Кто извлекает пользу из существования организации?
- Кто помогает организации осуществлять свою деятельность?
- Кому организация передает информацию и от кого получает?
Business Use Case (вариант использования с точки зрения бизнес-процессов) определяется как описание последовательности действий (потока событий) в рамках некоторого бизнес-процесса, приносящей ощутимый результат конкретному действующему лицу.
Это определение подобно общему определению бизнес-процесса, но имеет более точный смысл. В терминах объектной модели Business Use Case представляет собой класс, объектами которого являются конкретные потоки событий в рамках описываемого бизнес-процесса.
Данный метод концентрирует внимание в первую очередь на элементарных бизнес-процессах. Такой процесс можно определить как задачу, выполняемую одним человеком в одном месте в одно время в ответ на некоторое событие, приносящую конкретный результат и переводящую данные в некоторое устойчивое состояние (например, подтверждение платежа по кредитной карточке). Выполнение такой задачи обычно включает от пяти до десяти шагов и может занимать от нескольких минут до нескольких дней, но рассматривается как один сеанс взаимодействия действующего лица с исполнителями.
Каждый Business Use Case отражает цель или потребность некоторого действующего лица. Например, если рассмотреть процесс регистрации пассажиров в аэропорту (рис. 19), то его основным действующим лицом будет сам Пассажир, главная цель которого в данном процессе – пройти регистрацию. Эта цель моделируется в виде Business Use Case с наименованием «Пройти регистрацию». Другим действующим лицом является Руководитель туристической группы, регистрирующий группу пассажиров. Стереотипы связей явно показывают роль действующих лиц по отношению к вариантам использования.
Описание Business Use Case представляет собой спецификацию (текстовый документ), которая, подобно обычному варианту использования, состоит из следующих пунктов [Коберн-02]:
- наименование;
- краткое описание;
- цели и результаты (с точки зрения действующего лица);
- описание сценариев (основного и альтернативных);
- специальные требования (ограничения по времени выполнения или другим ресурсам);
- расширения (исключительные ситуации);
- связи с другими Business Use Case;
- диаграммы деятельности (для наглядного описания сценариев – при необходимости).
Пример спецификации Business Use Case:
Наименование – пройти регистрацию. Краткое описание – данный Business Use Case реализует процесс регистрации пассажира на рейс. Цели – получить посадочный талон и сдать багаж. Основной сценарий:
1. Пассажир встает в очередь к стойке регистратора.
2. Пассажир предъявляет билет регистратору.
3. Регистратор подтверждает правильность билета.
4. Регистратор оформляет багаж.
5. Регистратор резервирует место для пассажира.
6. Регистратор печатает посадочный талон.
7. Регистратор выдает пассажиру посадочный талон и квитанцию на багаж.
8. Пассажир уходит от стойки регистратора.
Альтернативные сценарии:
3а. Билет неправильно оформлен – регистратор отсылает пассажира к агенту по перевозкам.
4а. Багаж превышает установленный вес – регистратор оформляет доплату.
Специальные требования – время регистрации не должно превышать одной минуты.
Описание Business Use Case может сопровождаться целью процесса, которая так же, как и в методе Eriksson-Penker, моделируется с помощью класса со стереотипом «goal», а дерево целей изображается в виде диаграммы классов.
Для каждого Business Use Case строится модель бизнес-анализа – объектная модель, описывающая реализацию бизнес-процесса в терминах взаимодействующих объектов (бизнес-объектов – Business Object), принадлежащих к двум классам – Business Worker и Business Entity.
Business Worker (исполнитель) – активный класс, представляющий собой абстракцию исполнителя, выполняющего некоторые действия в рамках бизнес-процесса. Исполнители взаимодействуют между собой и манипулируют различными сущностями, участвуя в реализациях сценариев Business Use Case. На диаграмме классов UML исполнитель представляется в виде класса со стереотипом «business worker». Например, если рассмотреть Business Use Case «Пройти регистрацию», можно определить в нем двух исполнителей – Регистратора и Координатора багажа.
Business Entity (сущность) – пассивный класс, не инициирующий никаких взаимодействий. Объект такого класса может участвовать в реализациях различных Business Use Case. Сущность является объектом различных действий со стороны исполнителей.
Понятие Business Entity аналогично понятию сущности в модели «сущностьсвязь», за исключением того, что в данной модели не определяется поведение сущности, а в объектной модели сущность может иметь набор обязанностей. На диаграмме классов UML сущность представляется в виде класса со стереотипом «business entity». Например, в Business Use Case «Пройти регистрацию» можно определить следующие сущности: Билет, Рейс, Авиалиния, Багаж, Багажная бирка.
Модель бизнес-анализа может состоять из диаграмм разных типов. В состав модели обязательно должна входить диаграмма классов, содержащая исполнителей и сущности. Пример такой диаграммы для Business Use Case «Пройти регистрацию» приведен на рис. 20.
На данной диаграмме ассоциации между классами-исполнителями отражают наличие взаимодействия между реальными исполнителями (Регистратором и Координатором багажа). Ассоциации между классами-исполнителями и классами-сущностями показывают, какими именно объектами манипулируют конкретные исполнители (Регистратор имеет дело с Багажом и Багажной биркой, а Координатор багажа – только с Багажом). Ассоциации между классами-сущностями отражают различные структурные связи (к одному месту багажа прикрепляется одна багажная бирка).
Кроме диаграммы классов, модель бизнес-анализа может включать:
- Диаграммы последовательности (и кооперативные диаграммы), описывающие сценарии Business Use Case в виде последовательности обмена сообщениями между объектами-действующими лицами и объектами-исполнителями. Такие диаграммы помогают явно определить в модели обязанности каждого исполнителя в виде набора операций класса. Пример диаграммы последовательности, описывающей основной сценарий Business Use Case «Пройти регистрацию», приведен на рис. 21. Модифицированная диаграмма классов модели бизнес-анализа с операциями приведена на рис. 22.
- Диаграммы деятельности с потоками объектов и «плавательными дорожками», описывающие взаимосвязи между сценариями одного или различных Business Use Case. Пример такой диаграммы для процесса заказа товаров в торговой компании приведен на рис. 23.
- Диаграммы состояний, описывающие поведение отдельных бизнес-объектов (например, для сущности «Багаж» можно описать переходы между состояниями «Определен вес», «Зарегистрирован», «Находится на транспортере» и т.д.).
Метод моделирования Rational Unified Process предусматривает специальное соглашение, связанное с группировкой структурных элементов и диаграмм бизнес-модели. Это соглашение включает следующие правила:
- Все действующие лица, варианты использования и диаграммы вариантов использования для бизнес-процессов помещаются в пакет с именем Business Use Case Model.
- Все классы и диаграммы моделей бизнесанализа помещаются в пакет с именем Business Analysis Model.
- Если моделируется деятельность более чем одного подразделения организации, то совокупность всех классов-исполнителей и классов-сущностей из моделей бизнес-анализа для различных Business Use Case разделяется на пакеты, соответствующие этим подразделениям. Этим пакетам присваиваются наименования подразделений (например, Бухгалтерия, Отдел доставки и т.п.) и стереотип «business system».
- Диаграммы модели бизнес-анализа, относящиеся к конкретному Business Use Case (диаграммы классов, последовательности, деятельности и состояний) помещаются в кооперацию с именем данного Business Use Case и стереотипом «business use-case realization» (реализация бизнес-процесса). Все кооперации помещаются в пакет с именем Business Use Case Realizations.Пример структуры бизнесмодели для процесса регистрации пассажиров в аэропорту приведен на рис. 24.
Метод моделирования Rational Unified Process обладает следующими достоинствами:
- модель бизнес-процессов строится вокруг участников процессов (заинтересованных лиц) и их целей, помогая выявить все потребности клиентов организации. Нетрудно заметить, что такой подход в наибольшей степени применим для организаций, работающих в сфере оказания услуг (торговые организации, банки, страховые компании и т.д.);
- моделирование на основе вариантов использования способствует хорошему пониманию бизнес-модели со стороны заказчиков;
- метод предусматривает достаточно простой переход от бизнес-модели к системным требованиям.
Однако следует отметить, что при моделировании деятельности крупной организации, занимающейся как производством продукции, так и оказанием услуг, необходимо применять различные методы моделирования, поскольку для моделирования производственных процессов более предпочтительным является процессный подход (например, метод Eriksson-Penker).
4. Сравнительный анализ различных методов и инструментальных средств моделирования
Основная задача сравнительного анализа состоит в том, чтобы ответить на ряд вопросов, возникающих у руководителей и специалистов в начале проекта по моделированию и реорганизации бизнес-процессов предприятия:
- Какое инструментальное средство использовать в проекте (ARIS, BPwin, Rational Rose и др.)?
- Какой метод использовать для описания процессов?
- Как моделировать процессы с использованием некоторого инструментального средства?
В настоящее время на российском рынке представлено достаточно большое количество инструментальных средств (ARIS, AllFusion Modeling Suite, Rational Rose и др.), которые позволяют, так или иначе, создавать описания (модели) бизнес-процессов.
Рациональный выбор средств возможен при понимании руководством компании и ее специалистами нескольких аспектов:
- целей проекта;
- требований к информации о бизнес-процессах, необходимой для анализа и принятия решений в рамках конкретного проекта;
- возможностей инструментальных средств в части описания процессов.
Говорить о преимуществе того или иного метода и средств бессмысленно, пока не определены тип и рамки проекта, его основные задачи. Описание бизнес-процессов проводится с целью их дальнейшего анализа и реорганизации. Целью реорганизации может быть внедрение информационной системы, сокращение затрат на выпуск продукции, повышение качества обслуживания клиентов, создание должностных и рабочих инструкций при внедрении стандартов ISO-9000 и т.д. Для каждой такой задачи существуют определенные параметры, определяющие набор критических знаний по бизнес-процессу. От задачи к задаче требования к описанию бизнес-процессов могут меняться.
В качестве примера можно привести результаты сравнительного анализа методов ARIS и IDEF (IDEF0, IDEF3), а также поддерживающих их инструментальных средств ARIS Toolset и BPwin [Репин-04]. Итак…
Одним из важнейших аспектов описания моделей бизнес-процессов является отражение управляющих воздействий, обратных связей по контролю и управлению процедурой. В нотации ARIS eEPC управление процедурой может быть отражено только при помощи указания входящих документов, которые регламентируют выполнение процедуры, и последовательности выполнения процедур во времени (запускающие события). В отличие от ARIS, в нотации IDEF0 каждая процедура должна иметь хотя бы одно управляющее воздействие (вход управления – стрелка сверху). Если при создании модели в eEPC указывать только последовательность выполнения процедур, не заботясь об отражении управляющих документов и информации, полученные модели будут иметь низкую ценность с точки зрения анализа и дальнейшего использования. К сожалению, именно эта ошибка наиболее распространена на практике. Создается модель потока работ (workflow), отражающая простую последовательность выполнения процедур и входящих/исходящих документов, при этом управляющие (контрольные) воздействия на функции в модели не отражаются.
Кроме того, если попытаться в нотации ARIS eEPC отразить все условия и ограничения, определяющие выполнение функций, то потребуется описать большое количество событий и входящей информации (например, устных распоряжений руководителей), и модель станет сложной и плохо читаемой (эти недостатки присущи так же и нотации IDEF3). Указанных недостатков нет у нотации IDEF0. В то же время в IDEF0 не предусмотрено использование символов логики выполнения процесса.
Таким образом, нотация ARIS eEPC является расширением достаточно простой нотации IDEF3. Для адекватного описания процесса управления в нотации eEPC необходимо заранее договориться, как будут отражены в модели документы (информация), регламентирующие выполнение процедур процесса.
Функциональные возможности инструментальных средств моделирования ARIS Toolset и BPwin можно корректно сравнивать только по отношению к определенному кругу задач. С точки зрения формирования моделей бизнес-процессов каждая из рассматриваемых систем имеет свои преимущества и недостатки. В зависимости от решаемых задач эти преимущества и недостатки могут как усиливаться, так и наоборот. Например, отсутствие четких соглашений по моделированию управляющих воздействий в рамках eEPC ARIS может привести к созданию моделей, не отвечающих на поставленные вопросы, в то время как нотация IDEF0 системы BPwin позволяет решить эту задачу. С другой стороны, описание процедуры, выполняемой одним сотрудником, может быть описано более адекватно при помощи eEPC ARIS, чем IDEF0 или IDEF3 BPwin.
Сравнивая две системы, следует отметить, что для хранения моделей в ARIS используется объектная СУБД, и под каждый проект создается новая база данных. Для удобства пользователя модели (объекты моделей) могут храниться в различных группах, организованных в зависимости от специфики проекта. Естественно, что в ARIS предусмотрены различные функции по администрированию базы данных: управление доступом, консолидация и т.п. В BPwin данные модели хранятся в файле, что существенно упрощает работу по созданию модели, но с другой стороны ограничивает возможности по анализу объектов модели. Для управления групповой разработкой используется средство Model Mart, обеспечивающее многопользовательский доступ к моделям, созданным с помощью ERwin и BPwin.
Часто одним из недостатков BPwin называют ограничение по количеству объектов на диаграмме. Однако опыт реальных проектов показывает, что для проекта, результаты которого можно практически использовать (критерий – обозримость), количество объектов в базе данных ARIS или модели BPwin составляет 150-300. Это означает, что при 8 объектах на одной диаграмме общее количество диаграмм (листов) в модели составит 20-40. Базы данных ARIS Toolset (как и BPwin), содержащие более 500 объектов, фактически невозможно использовать. Следует подчеркнуть, что модель создается для выделения и анализа проблем, т.е. требуется детальное описание наиболее сложных, проблемных областей деятельности, а не тотальное описание всех процессов. Как ни странно, среди руководителей многих компаний существует вера в то, что детальное описание процессов само по себе представляет ценность и может решить многие проблемы. Это далеко не так. Именно понимание того, что нужно описывать и какие аспекты функционирования реальной системы при этом отражать, определяет успех проекта по моделированию бизнес-процессов.
ARIS предоставляет существенно больше возможностей по работе с отдельными объектами модели, но именно вследствие чрезмерного количества настроек работа по созданию модели должна регламентироваться жесткими и объемными соглашениями по моделированию (стандартами). Разработка таких соглашений требует значительного времени (1-3 месяца) и высококвалифицированных специалистов. Если проект с использованием ARIS начинается без детальной проработки таких соглашений, то вероятность создания моделей бизнес-процессов, не отвечающих на поставленные вопросы, составляет 80-90%. В свою очередь, BPwin отличается простотой в использовании и достаточной строгой регламентацией при создании диаграмм (стандарт IDEF и рекомендации по его применению, бланк IDEF для создания диаграммы, ограниченное количество обязательно заполняемых полей, ограничение количества объектов на одной диаграмме и т.д.). ARIS, безусловно, является более мощным и «тяжелым» инструментом по сравнению с BPwin, но это в итоге оборачивается значительными трудностями и высокими затратами на его эксплуатацию.
Таким образом, для ведения небольших по масштабам (малые и средние предприятия, 25 человека в группе консультантов) и длительности (2-3 месяца) проектов рационально использовать BPwin. Для крупных и/или длительных проектов (например, внедрение системы непрерывного улучшения бизнес-процессов в соответствии со стандартами ISO) больше подходит ARIS. В этом случае подготовительные работы по созданию регламентирующей документации могут занять 1-3 месяца, но это является необходимым элементом последующей успешной работы.
По мнению автора, современные методы и инструментальные средства моделирования достигли такого уровня, что их возможности с точки зрения изобразительных средств моделирования в настоящее время стали примерно одинаковыми. При этом одним из основных критериев выбора того или иного метода и инструмента становится степень владения им со стороны консультанта или аналитика, грамотность выражения своих мыслей на языке моделирования, обеспечивающая достаточный уровень понимания моделей со стороны руководителей и специалистов организации. В противном случае в моделях, построенных с использованием любого метода, будет невозможно разобраться.
5. Перспективные направления в моделировании бизнес-процессов
Как было сказано выше, в настоящее время предпринимаются многочисленные проекты, целью которых является интеграция существующих методов и языков моделирования и создание единого методического и технологического базиса моделирования бизнес-процессов, а в более широком контексте – моделирования предприятий (enterprise modeling) [BPMN-03, UEML-02, BPDM-03].
5.1. Деятельность консорциума Business Process Management Initiative (BPMI)
Консорциум BPMI был создан в августе 2000 г. по инициативе компании Intalio группой из шестнадцати компаний-разработчиков ПО и консалтинговых фирм. BPMI (http://www.bpmi.org) – независимая организация, занимающаяся разработкой открытых спецификаций для управления процессами электронной коммерции. К таким спецификациям относятся проекты стандартов Business Process Modeling Language (BPML) и Business Process Query Language (BPQL), предназначенных для управления бизнес-процессами (аналогично использованию SQL для управления данными с помощью СУБД). BPML – это метаязык для моделирования бизнес-процессов, также как XML – метаязык для моделирования данных. BPML позволяет создать абстрактную исполнимую модель взаимодействующих процессов, основанную на концепции конечного автомата.
В 2003 г. BPMI опубликовал проект стандарта Business Process Modeling Notation (BPMN) [BPMN-03]. Целью этого проекта является создание общей нотации для различных категорий специалистов: от бизнес-аналитиков и экспертов организаций до разработчиков ПО. BPMN состоит из одной диаграммы под названием Business Process Diagram (BPD) (рис. 25), которая непосредственно отображается в конструкции BPML.
Хотя спецификация BPMN в настоящее время существует только в версии 1.0, многие компании уже приняли ее на вооружение. BPMI не является комитетом по стандартизации, поэтому стандарт BPMN будет в конечном счете передан соответствующей организации. Наиболее вероятным кандидатом на роль такой организации является консорциум Object Management Group (OMG), и переговоры относительно такой передачи уже имели место. Учитывая высокую степень сходства между BPMN и диаграммой деятельности UML 2.0, можно допустить их интеграцию в будущем в общую модель.
5.2. Проект UEML
Проект Unified Enterprise Modeling Language (UEML) [UEML-02], финансируемый Европейской Комиссией, был предпринят с целью интеграции многочисленных языков моделирования архитектуры предприятий (Enterprise Modeling Languages) и создания в перспективе унифицированного языка моделирования с четко определенными синтаксисом, семантикой и правилами отображений между различными средствами моделирования. Основой для такой интеграции послужили модели GERAM (Generalised Enterprise Reference Architecture and Methodology) и Захмана [UEML-02]. Проект UEML включает разработку:
- общего визуального, основанного на шаблонах языка для коммерческих инструментальных средств моделирования;
- стандартных, независимых от инструментов механизмов передачи моделей между проектами;
- репозитория моделей предприятий.
Одним из результатов проекта, в частности, явилось создание портала http://www.ueml.org, который содержит всю информацию по данному проекту.
5.3. Работы в рамках проекта OMG MDA
OMG – это консорциум разработчиков ПО и пользователей, представляющих различные коммерческие, государственные и академические организации, насчитывающий около 800 участников. OMG занимается разработкой различных стандартов в области взаимодействия распределенных систем (наиболее известные из них – CORBA и UML).
Работа OMG в области моделирования бизнес-процессов связана в основном с концепцией Model Driven Architecture (MDA) [Кузнецов-03].
MDA интегрирует различные подходы к моделированию и вводит набор отображений между моделями различных уровней абстракции (рис. 26). Любая организация, использующая MDA, может разрабатывать только те модели, которые требуются для ее собственных целей.
В настоящее время тремя главными инициативными проектами OMG являются создание метамоделей для описания бизнес-процессов (Business Process Definition Metamodel – BPDM) [BPDM-03], бизнес-правил (Business Semantics of Business Rules, and Production Rule Representation) и онтологии (Ontology Definition Metamodel). Назначение BPDM (рис. 27) – интеграция и обеспечение взаимодействия между моделями, использующимися различными организациями (такими, как диаграммы UML или BPMN). Предполагается, что BPDM будет реализована в виде профиля UML 2.0.
Аналогично, OMG работает над стандартизацией бизнес-правил и их совместимостью с BPDM. Все это вместе взятое должно в перспективе обеспечить новый уровень совместимости между моделями, используемыми для описания бизнес-процессов и ПО.
Библиография
[Буч-2000] Буч Г., Рамбо Дж., Джекобсон А. Язык UML. Руководство пользователя.: Пер. с англ. – М.: ДМК, 2000.
[Калашян-03] Калашян А.Н., Калянов Г.Н. Структурные модели бизнеса: DFD-технологии. – М.: Финансы и статистика, 2003.
[Каменнова-01] Каменнова М., Громов А., Ферапонтов М., Шматалюк А. Моделирование бизнеса. Методология ARIS. – М.: Весть-МетаТехнология, 2001.
[Коберн-02] Коберн А. Современные методы описания функциональных требований к системам.: Пер. с англ. – М.: ЛОРИ, 2002.
[Крачтен-02] Крачтен Ф. Введение в Rational Unified Process.: Пер. с англ. – М.: Вильямс, 2002.
[Кузнецов-03] Кузнецов М. MDA – новая концепция интеграции приложений. – «Открытые системы», No9, 2003.
[Марка-93] Марка Д.А., МакГоуэн К. Методология структурного анализа и проектирования. – М.: МетаТехнология, 1993.
[Ойхман-97] Ойхман Е.Г., Попов Э.В. Реинжиниринг бизнеса: реинжиниринг организации и информационные технологии. – М.: Финансы и статистика, 1997.
[РД-2000] Методология функционального моделирования IDEF0. Руководящий документ РД IDEF0 – 2000. – М.: Госстандарт России, 2000.
[Репин-04] Репин В.В., Елиферов В.Г. Процессный подход к управлению. Моделирование бизнес-процессов. – М.: РИА «Стандарты и качество», 2004.
[Черемных-01] Черемных С.В., Семенов И.О., Ручкин В.С. Структурный анализ систем: IDEF-технологии. – М.: Финансы и статистика, 2001.
[BPDM-03] Business Process Definition Metamodel. Request For Proposal. OMG Document: bei/2003-01. http://www.omg.org
[BPMN-03] Business Process Modeling Notation. Working Draft (1.0) August 25, 2003. http://www.bpmn.org
[Eriksson-2000] Eriksson, Hans-Erik and Penker, Magnus. Business Modeling with UML: Business Patterns at work. Wiley Computer Publishing, 2000.
[UEML-02] Report on the State of the Art in Enterprise Modeling. Project UEML: Unified Enterprise Modeling Language. September 27th 2002. http://www.ueml.org
22.07.2018
Главной целью использования методологий и методов моделирования бизнес-процессов является повышение операционной эффективности компании – то есть организация всех дел наиболее оптимальным способом, ведущим к снижению затрат и одновременно к улучшению качества предлагаемых продуктов или услуг. Для того, чтобы провести такого рода оптимизацию, нужно в первую очередь смоделировать основные процессы, повседневно происходящие во всех подразделениях предприятия.
К настоящему времени разработаны многочисленные методологии моделирования бизнес-процессов. Менеджер может выбирать подходящий вариант, исходя из особенностей деятельности компании и текущих задач. К выбору стоит подходить ответственно – в конечном итоге именно от этого зависит, достаточно ли наглядной, удобной и понятной окажется модель. Поэтому конкурентоспособный управленец обязан быть хорошо знаком как минимум с несколькими основными методиками. С какими именно?
Методы моделирования бизнес-процессов
- Flow Chart Diagram (диаграмма потока работ) – способ графического описания работы с применением особых символов для каждой операции, набора данных, единицы оборудования, исполнителя. В результате на схеме демонстрируется логическая последовательность всех операций. Это гибкий подход, он дает возможность при необходимости рассмотреть один комплекс действий сразу в нескольких вариантах.
- Data Flow Diagram – изображение передачи данных между операциями, для характеристики информационной стороны бизнес-процесса. Это позволяет наблюдать данные на входе в систему и в каждую операцию в отдельности, и соответствующую информацию на выходе. Также в ней отображается, какими способами сведения претерпевают изменения и где хранятся. Деятельность компании раскладывается на логические информационные уровни, причем базовая схема улучшается добавлением подробных описаний подпроцессов, тоже имеющих свою внутреннюю структуру.
- Role Activity Diagram (диаграмма ролей). Под ролью здесь понимается каждый элемент, выполняющий ту или иную функцию. Каждая часть описывается, и анализируется отдельно, а затем рассматривается их взаимодействие.
- IDEF (Integrated Definition for Function Modeling) – это целый набор аналитических средств, применяемых не только в управлении бизнесом, но и во многих других сферах. Чаще всего встречаются варианты IDEF0 и IDEF3. Первый из этих вариантов представляет собой модель функций, причем сложные функции делятся на более простые составляющие, а затем различные блоки логически объединяются посредством стрелок. При использовании IDEF3 речь идет о «поведенческом» описании: демонстрируется поток работ либо переходные состояния объектов.
- Цветные сети Петри – график, на котором представлены действия и события, символизирующие переход из одной стадии в другую. Таким образом можно увидеть, что приводит к тем или иным изменениям, насколько быстро и эффективно.
- Unified Modeling Language – графический язык для визуализации, специфицирования, конструирования и документирования процессов и систем. Комплекс из девяти видов диаграмм, описывающих разные аспекты: классы, объекты, прецеденты, последовательности, кооперации, состояния, деятельность, компоненты, развертывание. В результате получается представление очередности действий сотрудников и работы различных объектов внутри организации. Схема может разветвляться, в ней отмечаются разнообразные условия и исключения из правил.
- ARIS (Architecture of Integrated information Systems) – методология и соответствующее семейство программных продуктов. Они используются для структурированного описания, анализа и последующего совершенствования бизнес-процессов предприятия. Система наглядно показывает правила деятельности предприятия и значения показателей результативности. Так можно определить желаемые характеристики работы компании, совершенствовать архитектуру, улучшить процессы, рационально распределять ресурсы. Инструмент определяет весь цикл разработки – анализ требований, спецификация информационной системы и описание физической реализации.
Методы моделирования бизнес-процессов реализованы в специальных компьютерных программах, позволяющих оперативно визуализировать «картинку» при вводе данных. Каждую из методологий можно изучить в рамках специализированных образовательных программ. Инструментальные средства рассматриваются отдельности, углубленно, или обзорно, в сравнении. Именно накапливание систематизированных знаний обо всех моделях, рассмотрение примеров практического применения и способов использования в различных ситуациях помогает успешно использовать разные методики при реальном руководстве предприятием.
Необходимые знания можно получить, например, на программах профессиональной переподготовки «Операционная эффективность бизнеса и совершенствование», «Информационная бизнес-аналитика».
← Назад к списку
Contents
- 1 Классификация моделей
- 1.1 Понятие модели
- 1.2 Классификация моделей
- 1.3 Языки описания моделей
- 1.4 Содержание модели бизнеса
- 1.5 Методы моделирования бизнеса
- 1.5.1 Структурные методы
- 1.5.2 Методы объектно-ориентированного моделирования
- 1.5.3 Методы имитационного моделирования
- 1.5.4 Интегрированные методы
- 2 Структурные методологии
- 2.1 Методология IDEF0
- 2.2 Методология IDEF3
- 2.2.1 Типы перекрестков
- 2.2.2 Пример IDEF3
- 2.2.3 Правила создания перекрестков
- 2.2.4 Правило относительно единиц работ
- 2.3 Методология DFD
- 3 Объектно-ориентированный язык UML
- 3.1 Прецедентная модель бизнеса
- 3.2 Поток событий прецедента
- 3.3 Диаграмма деятельности (Activity Diagram)
- 3.4 Элементы диаграммы деятельности
- 3.5 Структурирование прецедентов
- 3.6 Объектная модель бизнес-процесса
- 3.7 Классы и объекты
- 3.8 Динамическая диаграмма взаимодействия
- 3.9 Элементы диаграммы последовательности
- 3.10 Статическая диаграмма взаимодействия
- 3.11 Диаграмма классов
- 3.12 Описание объектов
- 4 Интегрированная методология ARIS
- 4.1 Организационная схема
- 4.2 Дерево функций
- 4.3 Событийная цепочка процесса
- 4.4 Элементы диаграммы eEPC
- 4.5 Интеграция моделей
- 4.6 Детализация моделей
- 5 Инструментальные средства
- 5.1 Возможности инструментальных средств
- 6 Использованная литература
Статья написана на основе лекций «Моделирование и анализ бизнес-процессов» профессора Томского государственного университета систем управления и радиоэлектроники, Силич Марии Петровны.
Классификация моделей
Понятие модели
Модель представляет искусственный, созданный человеком объект любой природы (умозрительный или материально реализованный), который замещает или воспроизводит исследуемый объект.
Процесс построения, изучения и применения моделей называется моделированием.
Модель — упрощенный, приближенный образ, который отражает наиболее существенные (с точки зрения цели моделирования) свойства оригинала.
Соответствие модели оригиналу называется адекватностью модели.
Адекватность включает требования полноты и точности (правильности). Требования должны выполняться в той мере, которая достаточна для достижения цели.
Для одного и того же объекта может быть построено множество различных моделей, отвечающих различным целям.
Модель внешнего вида часов
Структурная схема часов
Виды подобия: прямое (макет, фотография), косвенное (подобие по аналогии), условное (на основе соглашений).
Процесс моделирования имеет свойство динамичности: модели развиваются, уточняются, переходят одна в другую.
Классификация моделей
Познавательные (объяснительные) модели отражают уже существующие объекты.
Нормативные (прагматические) модели отражают объекты, которые должны быть осуществлены.
Градации нормативных моделей: от референтной (для целого класса объектов) до модели конкретного объекта.
Статические модели не учитывают временной фактор.
Динамические модели отражают изменения объекта, происходящие с течением времени. Динамическая модель сама может быть статична или находиться в динамике (имитационная модель).
Материальные модели построены из реальных объектов.
Абстрактные модели — это идеальные конструкции, выполненные средствами мышления, сознания.
Декларативные модели отражают свойства, структуры, состояния объектов.
Процедурные модели отражают процедурное, операционное знание.
Детерминированные модели отражают процессы и явления, не подверженные случайностям.
Стохастические – отражают случайные процессы, описываемые вероятностными характеристиками и статистическими закономерностями.
Формализованные модели могут не иметь смысловой интерпретации.
В содержательных моделях сохраняется семантика моделируемого объекта.
Языки описания моделей
Языки описания моделей: аналитические, численные, логические, теоретико-множественные, лингвистические, графические.
Графические модели (схемы, диаграммы, графики, чертежи) – наглядны.
Нотация — система условных обозначений (знаков) и правил их использования, принятая в конкретной методологии.
Требования к нотации:
- простота — простой знак предпочтительнее сложного;
- наглядность — хотя бы отдаленное сходство с оригиналом;
- индивидуальность — достаточное отличие от других обозначений;
- однозначность — нельзя обозначать одним символом различные объекты;
- определенность — четкие правила использования модели;
- учет устоявшихся традиций.
Содержание модели бизнеса
В модели бизнеса отражают:
- функции, которые бизнес-система должна выполнять — что она делает, для кого, с какой целью;
- процессы, последовательность отдельных шагов процессов (работ, операций);
- организационные структуры, обеспечивающие выполнение процессов;
- материальные и информационные потоки, возникающие в ходе выполнения процессов;
- данные, необходимые при выполнении процессов, и отношения между этими данными.
Методы моделирования бизнеса
Структурные методы
Основаны на последовательной декомпозиции системы на все более мелкие подсистемы.
Принципы структурного подхода:
- «разделяй и властвуй» — разбиение сложных проблем на множество меньших задач, легких для понимания и решения;
- иерархическое упорядочивание – организация составных частей проблемы в иерархические древовидные структуры.
Две группы методов: моделирующие функциональную структуру и структуру данных
Наибольшее распространение получили методологии:
- IDEF0 – функциональные модели, основанные на методе SADT;
- IDEF1X – диаграммы данных «сущность-связь» (ERD);
- IDEF3 — диаграммы потоков работ (Work Flow Diagrams);
- DFD — диаграммы потоков данных (Data Flow Diagrams).
Методы объектно-ориентированного моделирования
Предназначены для создания моделей систем с целью их последующей реализации в виде объектно-ориентированных программ
Наиболее известные методы:
- Booch’93 Г. Буча,
- OMT Дж. Румбаха
- OOSE А. Джекобсона
- UML (Unified Modeling Language) – на основе Booch’93, OMT, OOSE
Главным структурообразующим элементом является объект.
В программировании объект — это структура, объединяющая данные и процедуры.
В модели бизнеса объекты – это участники бизнес-процесса (активные объекты) и пассивные объекты (материалы, документы), над которыми выполняют действия активные объекты.
Методы имитационного моделирования
Позволяют имитировать на компьютере (с помощью специальных программ) процессы функционирования реальной системы (в режиме сжатого времени или пошаговом режиме).
Наиболее распространенные методы:
- сети Петри и раскрашенные сети Петри (CPN, Colored Petri Nets);
- GPSS (General Purpose Simulating System) – унифицированный язык имитационного моделирования;
- SIMAN (SIMulation ANalysis) – язык визуального моделирования.
Интегрированные методы
Интегрированные методы моделирования объединяют различные виды моделей – структурного анализа, объектно-ориентированные, имитационные и др.
- ARIS (Architecture of Integrated Information System) позволяет отражать в единой интегрированной модели: оргструктуры, функции, данные, процессы. Использует множество типов моделей.
- G2 — методология создания динамических интеллектуальных систем позволяет моделировать процессы с использованием знаний эксперта.
- BRM (Business Rules Management) – методология управления бизнес-правилами.
Структурные методологии
Методология IDEF0
Методология IDEF0 базируется на методе SADT (Structured Analysis and Design Technique) Росса, предназначенном для структурированного представления функций системы и анализа системных требований.
IDEF0-модель состоит из диаграмм и фрагментов текста. На диаграммах все функции системы и их взаимодействия представлены как блоки (функции) и дуги (отношения).
Основные элементы модели:
- Функциональный блок (Activity) – преобразование (активность);
- Выходы (Output) – результат преобразования;
- Входы (Input) — объекты, которые преобразуются в Выходы;
- Управление (Control) — информация, как происходит преобразование;
- Механизм (Mechanism) – объекты, осуществляющие преобразование.
Функциональный блок может быть декомпозирован — представлен в виде совокупности других взаимосвязанных блоков, которые детально описывают исходный блок.
Таким образом, IDEF0-модель состоит из набора иерархически связанных диаграмм
На диаграмме блоки соединяются дугами: выходные дуги одних блоков могут являться входами (управлением, механизмом) других.
Дуги с одним свободным концом имеют источник или получатель вне диаграммы. Для обозначения внешних дуг используются буквы:
- I (Input),
- C (Control),
- O (Output) и
- M (Mechanism).
Типы связей между блоками:
Выход-вход
Выход-управление
Выход-механизм
Обратная связь по управлению
Обратная связь по входу
Методология IDEF3
IDEF3-модели используются для документирования технологических (информационных) процессов, где важна последовательность выполнения процесса
Выделяют четыре элемента IDEF3-модели:
Единица работы — отображают действия, процессы, события, этапы выполнения работ. Единица работы может иметь только один вход и один выход
Ссылки (Referents):
необходимые элементы для выполнения процесса (сырье, материалы);
результат процесса (изделие);
активаторы процесса (клиент, поставщик).
Связи (Links), которые бывают двух типов:
передают действия от одной единицы работ к другой
соединяют ссылку с единицей работ (активируют единицу работ)
Перекрестки (Junctions) – элементы модели, за счет которых описывается логика и последовательность выполнения этапов процесса.
Бывают двух видов:
перекрестки слияния – Fan-in
перекрестки ветвления – Fan-out
Типы перекрестков
Асинхронное И (Asynchronous AND)
выходной процесс запустится, если завершились все входные процессы
после завершения входного процесса запустятся все выходные процессы
Синхронное И (Synchronous AND)
выходной процесс запустится, если завершились одновременно все входные процессы
после завершения входного процесса запустятся все выходные процессы, причем запустятся одновременно
Асинхронное ИЛИ (Asynchronous OR)
выходной процесс запустится, если завершится один или несколько входных процессов
после завершения входного процесса запустятся один или несколько выходных процессов
Синхронное ИЛИ (Synchronous OR)
выходной процесс запустится, если завершились один или несколько входных процессов, причем завершились одновременно
после завершения входного процесса запустится один или несколько выходных процессов, причем запустятся одновременно
Исключающее ИЛИ (XOR, Exclusive OR)
выходной процесс запустится, если завершился только один входной процесс
после завершения входного процесса запустится только один выходной процесс
Пример IDEF3
Правила создания перекрестков
- Каждому перекрестку слияния должен предшествовать перекресток ветвления.
- Перекресток слияния «И» не может следовать за перекрестком ветвления типа синхронного, асинхронного или исключающего «ИЛИ».
- Перекресток слияния типа исключающего «ИЛИ» не может следовать за перекрестком ветвления типа «И».
- Перекресток, имеющий одну стрелку на одной стороне, должен иметь более одной стрелки на другой.
- Перекресток не может быть одновременно перекрестком слияния и ветвления. В ситуации, когда необходимо одновременно осуществить слияние и разветвление потоков работ, вводится каскад перекрестков.
Правило относительно единиц работ
В блок может входить и из блока может выходить только одна связь последовательности. Для отображения множества входов и выходов используются перекрестки.
Разрешается множественная декомпозиция работ:
для одной и той же работы может быть создано несколько диаграмм декомпозиции (для описания разных вариантов реализации работы).
Номер работы А13.1.2 означает:
родительская работа имеет код А13,
номер декомпозиции – 1
номер работы на текущей диаграмме – 2.
Методология DFD
Диаграммы потоков данных DFD позволяют эффективно и наглядно описать процессы документооборота и обработки информации.
Используются две нотации: Йордана и Гейна-Сарсона
Типы структурных элементов (в нотации Гейна-Сарсона):
1. Процессы (функции, операции, действия), которые обрабатывают и изменяют информацию. Процессы показывают, каким образом входные потоки данных преобразуются в выходные
2. Потоки данных, которые обозначают взаимодействие процессов с внешним миром и между собой. Поток данных соединяет выход процесса (объекта) с входом другого процесса (объекта).
3. Хранилища данных — представляют собой собственно данные, к которым осуществляется доступ. Эти данные могут быть созданы или изменены процессами.
4. Внешние сущности — определяют внешние элементы, которые участвуют в процессе обмена информацией с системой. Внешние сущности изображают входы в систему (источники информации) и/или выходы из системы (приемники информации). Примеры: заказчик, персонал, поставщик, клиент, склад, банк
Пример:
Язык UML был разработан для создания моделей информационных систем (ИС) с целью их последующей реализации в виде объектно-ориентированных программ.
Все представления о модели сложной системы фиксируются в виде диаграмм -специальных графических конструкций (схем, графов).
Имеется 8 основных типов диаграмм UML, отражающих различные аспекты: процессы, выполняемые системой (предоставляемые пользователю сервисы), последовательность выполняемых системой алгоритмических операций,
структуру программных объектов, их взаимодействие (обмен сообщениями) и т.д.
В настоящее время язык UML применяется не только для создания ИС, но и для анализа и перепроектирования бизнес-процессов:
вместо моделей процессов ИС строятся модели бизнес-процессов,
вместо программных объектов в моделях отражаются объекты бизнес-процессов (исполнители, продукция, услуги и т.д.),
вместо окружения ИС (пользователей ИС) моделируется окружение бизнеса (поставщики, партнеры, клиенты).
Прецедентная модель бизнеса
Отражает основные бизнес-процессы, их взаимодействие с окружением.
Начинается с построения внешней диаграммы (вариантов использования — Use Case Diagram), показывающей, как бизнес виден извне
Актор (действующее лицо, business actor) — субъект окружения бизнеса. Примеры акторов: Клиент, Покупатель, Поставщик, Партнер, Акционер, Заказчик.
Прецедент (вариант использования, business use case) — относительно законченная последовательность действий в рамках некоторого бизнес-процесса, приносящая ощутимый результат конкретному актору .
Примеры прецедентов: Производство продукта Продажа продукта, Сервисное обслуживание, Разработка продукта, Маркетинг и сбыт.
Экземпляр (реализация) прецедента – конкретный вариант хода событий класс прецедентов — обобщенный прецедент.
Для акторов тоже различают понятия класса и экземпляра.
Акторы разных классов могут иметь общие характеристики или общие обязательства.
Можно ввести обобщенный класс акторов. Между обобщенным типом актора и более конкретным устанавливается отношение обобщения
Между прецедентами и акторами устанавливаются отношения коммуникации (отношения ассоциации со стереотипом communicate).
Они моделируют взаимосвязи прецедентов с окружением (информационные и материальные потоки)
Между прецедентами, как правило, устанавливаются только отношения зависимости а также отношения, структурирующие прецеденты – отношения обобщения, включения (зависимости со стереотипом include), расширения (зависимости со стереотипом extend).
Для каждого из элементов модели составляется спецификация.
В спецификации актора: наименование, стереотип (business actor), описание, список атрибутов, список обязательств и др.
В спецификации прецедента: наименование, стереотип (business use case), краткое описание, перечень связанных с прецедентом поддиаграмм и документов
Поток событий прецедента
Поток событий — описание прецедентов последовательностью шагов
Поток событий прецедента «Продажа продукта»:
- Продавец получает заявку клиента
- Если в заявке указан готовый продукт, то Продавец проверяет наличие продукта на складе. Если продукта нет в наличии, прецедент заканчивается. Если продукт есть на складе, то прецедент продолжается с шага 6.
- Если в заявке указывается заказной продукт, то Продавец формирует заказ и передает его
- Изготовителю продукта.
- Изготовитель изготавливает продукт в соответствии с требованиями клиента и сообщает о готовности Продавцу.
- Изготовитель отправляет продукт на Склад.
- Продавец сообщает Клиенту о готовности продукта и принимает от Клиента оплату.
- Продавец сообщает Отправителю количество продукта и адрес клиента и заказывает транспорт.
- Отправитель получает продукт со склада и доставляет его клиенту.
Диаграмма деятельности (Activity Diagram)
Элементы диаграммы деятельности
Дорожки:
Если в выполнении прецедента участвуют несколько объектов, то действия, выполняемые каждым объектом, размещаются на соответствующей дорожке
Структурирование прецедентов
Чтобы упростить описание прецедента, необходимо его структурировать. Рассмотрим два способа структурирования.
1. Выделение фрагментов
Если из описания прецедента с альтернативными потоками событий можно выделить фрагмент, представляющий собой относительно законченную последовательность событий, то данный фрагмент рассматривается как отдельный прецедент. Между выделенным прецедентом и базовым устанавливается отношения включения (include).
Иногда используют отношение расширения (extend). Оно устанавливается между базовым прецедентом и прецедентом, содержащим некоторое дополнительное поведение, выполняемое при определенных условиях.
2. Обобщение
Если несколько прецедентов имеют похожее поведение, то следует выделить общее поведение в отдельный прецедент (родительский). Между каждым из частных прецедентов и родительским устанавливается отношение обобщения (generali-zation).
Объектная модель бизнес-процесса
Раскрывает внутреннее устройство бизнеса: какие виды ресурсов используются для реализации прецедентов и каким образом они взаимодействуют.
Классы объектов модели бизнеса:
активные — исполнители процессов (стереотип business worker), например, Продавец, Изготовитель, Разработчик;
пассивные — сущности (стереотип business entity), например, Продукт, Заказ, Счет.
Иногда среди активных выделяют:
интерфейсные (стереотип Boundary) – активные объекты, взаимодействующие с окружением, т.е. с акторами. Примеры – Продавец, Регистратор, Секретарь..
управляющие (стереотип Control) – активные объекты, участвующие в выполнении процессов, но не имеющие контакта с окружением. Примеры – Разработчик продукции, Изготовитель, Менеджер проекта..
Классы и объекты
Класс – некоторый тип объектов (множество похожих объектов),
Экземпляр – конкретный объект (представитель класса).
Объекты имеют:
имя (через двоеточие может быть указано имя класса)
свойства — описываются с помощью атрибутов
поведение — представляется с помощью операций
У объектов одного класса состав атрибутов и операций одинаков.
Они отличаются значениями атрибутов, т.к. экземпляры классов описывают характеристики конкретного объекта.
Для отображения взаимосвязей объектов в процессе выполнения прецедента используются динамическая и статическая диаграммы взаимодействий.
Для отображения структурных и ассоциативных связей между классами используется диаграмма классов
Динамическая диаграмма взаимодействия
Прецедент «Продажа заказного продукта»:
Продавец получает заявку клиента
Продавец формирует заказ и передает его Изготовителю продукта.
Изготовитель изготавливает продукт.
Изготовитель отправляет продукт на Склад и сообщает о готовности Продавцу.
Продавец сообщает Клиенту о готовности продукта и принимает от Клиента оплату.
Продавец сообщает Отправителю адрес клиента и заказывает транспорт.
Отправитель получает продукт со склада и доставляет его клиенту.
Элементы диаграммы последовательности
В верхней части диаграммы – активные объекты (и акторы) в виде прямоугольника («человечка»), от которого вниз проведена «линия жизни».
Сообщение (message) – отрезок горизонтальной линии со стрелкой, проведенный от линии жизни объекта (актора), посылающего сообщение, до линии жизни объекта (актора), получающего сообщение.
Отношение сообщения моделирует материальный или информационный поток.
Прием сообщений инициирует выполнение некоторого действия получателем
Сообщения упорядочены по времени: первое сообщение изображается вверху диаграммы, следующее – ниже, следующее – еще ниже и т.д.
Однако диаграмма не содержит метрики времени (расстояния между сообщениями – это не интервал времени)
Статическая диаграмма взаимодействия
Диаграмма кооперации (Collaboration Diagram)
Диаграмма классов
Диаграмма классов (Class diagram) используется для отображения устойчивых связей между классами объектов
Диаграмма классов для прецедента «Продажа продукта»
Для структурирования классов используются отношения обобщения и включения
Описание объектов
Спецификация объекта состоит из описания свойств (атрибутов) и поведения (обязательств, операций).
Интегрированная методология ARIS
Методология ARIS (Architecture of Integrated Information System) разработана в 1990-х годах профессором А.-В. Шеером
Для каждого из этих представлений можно построить несколько типов моделей (в ARIS 5.0 общее количество типов диаграмм — 130)
Выделено четыре основных вида моделей (четыре представления):
- организационные модели — структура организации (иерархия подразделений и должностей);
- функциональные модели — иерархия функций (целей), выполняемых в организации;
- информационные модели — структура информации, необходимой для реализации функций системы;
- модели процессов/управления — комплексный взгляд на реализацию деловых процессов в рамках системы
Организационная схема
К организационным моделям относится Организационная схема (Organizational chat).
Основные типы объектов этой модели:
Модель строится иерархически — от верхнего уровня структуры к нижнему.
Низшим уровнем является описание подразделений на уровне должностей — штатных единиц, занимаемых конкретными сотрудниками.
Дерево функций
К функциональным моделям относится Дерево функций (Function Tree).
Используется только один тип объекта — функция (работа, действие, этап в рамках процесса).
На верхнем уровне функции представляют собой бизнес-процессы. Детализация функций образует иерархическую структуру.
Самый нижний уровень представляют базовые функции (которые уже не могут быть разделены на составные элементы).
Событийная цепочка процесса
К моделям процессов/управления относится Диаграмма eEPC (extended Event driven Process Chain)
Основные типы объектов:
Элементы диаграммы eEPC
- Функция – некоторое (шаг процесса). С функцией могут быть связаны: исполнители, входные и выходные документы, программное обеспечение и т.д.
- Событие — какое-либо завершенное состояние объекта, которое влияет на дальнейший ход процесса. С одной стороны события являются стимулом к выполнению функций, с другой – их результатом.
- Логические операторы (И, ИЛИ, XOR) показывают разветвления в потоке процесса.
Примеры:
Интеграция моделей
Взаимосвязь моделей ARIS обеспечивается с помощью двух механизмов: интеграции и детализации
1. Механизм интеграции
Благодаря хранению объектов в едином репозитории (специальной базе данных).
При создании нового объекта в репозитарии появляется отдельная запись, задающая описание объекта.
Объект можно скопировать из одной модели и вставить в другую с помощью команд Copy/Paste.
Детализация моделей
2. Механизм детализации: для объектов текущей модели можно задавать ссылки на другие модели, являющиеся подробным описанием этого объекта.
Типы детализации, разрешенные к использованию, зависят от типа объекта
Механизм детализации позволяет избегать перегрузки моделей информацией, делая их более наглядными.
Инструментальные средства
Возможности инструментальных средств
- визуальное моделирование, позволяющее формировать графическую модель (в виде диаграмм, блок-схем, графов) в интерактивном режиме с использованием визуальных средств;
- проверка моделей – проверка соблюдения синтаксических и семантических правил построения моделей, определенных в используемой методологии моделирования;
- анализ построенных моделей – возможность просчитать стоимостные и временные характеристики процессов, проверить гипотезы «что, если …», выявить логические ошибки и т.д.;
- документирование – вывод представленной в моделях информации в виде текстовых описаний, содержащихся в файлах заданного формата;
- интеграция различных информационных систем – возможность обмениваться информацией о моделируемых процессах между различными приложениями;
- автоматическое создание компонент информационных систем – например, автоматическая кодогенерация (создание компьютерных программ), генерация баз данных на основе введенных моделей и диаграмм.
Использованная литература
1. Национальный исследовательский Томский политехнический университет. Томск. Силич М.П. 2016. 75 с. Презентация к лекции.
4.3
6
Голоса
Рейтинг статьи