Как вычисляется работа силы тяжести во время движения тела вниз

Совсем недавно, мы
изучили работу силы. Напомним, что работа силы равна произведению модуля силы,
модуля перемещения и косинуса угла между направлениями силы и перемещения:

Рассмотрим теперь частный
случай — работу силы тяжести при перемещении тела с высоты h1
на высоту h2.

Первый случай — это
падение тела вертикально вниз.

В этом случае,
перемещение, конечно же, будет равно

Сила тяжести, как мы
знаем, равна

.

Поскольку сила тяжести
направлена вертикально вниз, как и перемещение, косинус угла между
направлениями этих векторов равен единице. Таким образом, мы получим, что
работа силы тяжести равна:

Второй случай — это когда
тело, наоборот, подбрасывают вертикально вверх с высоты h1
на высоту h2.

В этом случае, угол между
направлением силы тяжести и направлением перемещения составит 180о.
Это приводит нас к тому, что работа силы тяжести опять-таки равна:

Наконец, рассмотрим
случай, когда между направлением силы тяжести и перемещением существует
произвольный угол α.

Обозначим модуль
перемещения за s. В этом случае,
работа силы тяжести равна:

Но, исходя из определения
косинуса:

Таким образом, мы в
третий раз получили одинаковый результат.

Более того, если даже мы
рассмотрим криволинейную траекторию, то убедимся, что результат будет тем же.

Любую кривую мы можем
представить в виде ломаной линии, состоящей из очень маленьких горизонтальных и
вертикальных отрезков. На горизонтальных отрезках работа силы тяжести будет
равна нулю, поскольку в этом случае направление перемещения перпендикулярно
направлению силы тяжести. На вертикальных участках работа будет равна: A
= mg(s1
+ … + sn).
Очевидно, что эта сумма будет равна (h1
h2):

Таким образом, мы
убедились, что работа силы тяжести не зависит от траектории движения тела.
Имеет значение лишь то, насколько начальное положение тела отличается от
конечного.
Это плавно подводит нас к понятию потенциальной энергии, которое
мы рассмотрим немного позже.

Из приведенных примеров
вытекает еще один важный вывод: при движении тела по замкнутой траектории
работа силы тяжести равна нулю.
Для начала рассмотрим контур, имеющий форму
прямоугольника. Как мы уже убедились, при движении тела в горизонтальном
направлении, работа силы тяжести равна нулю. Вектор перемещения направлен
перпендикулярно вектору силы тяжести. При перемещении же по противолежащим
вертикальным сторонам контура, сила тяжести совершает работу, равную по
абсолютной величине, но противоположную по знаку.

В одном случае вектор
перемещения направлен так же, как вектор силы тяжести, а в другом — направлен в
противоположную сторону. Это довольно логично, поскольку при движении тела
вниз, сила тяжести ему «помогает», а при движении вверх — наоборот, мешает.

Мы можем сколь угодно
усложнить эту траекторию, получив совершенно произвольный замкнутый контур.

Но опять же, разбив все
кривые на ломаные линии с горизонтальными и вертикальными участками, мы
убедимся, что суммарная работа будет равна нулю.

Силы, обладающие такими
свойствами, называются консервативными. То есть, консервативная сила — это
такая сила, работа которой в замкнутом контуре равна нулю.

Примеры решения задач.

Задача 1. Охотник
стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы
тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы,
то какова её масса?

Задача 2. Находясь
на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом
перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна
5 кг, то каково ускорение свободного падения на Нептуне?

Полезно ознакомиться в отдельности с работой каждой из механических сил, с которыми мы ознакомились в пятой главе: силы тяжести, силы упругости и силы трения. Начнем с силы тяжести. Сила тяжести равна $vec{F} = m vec{g}$ и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной.



рис. 1

При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты $h_{1}$ над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты $h_{2}$ над тем же уровнем (рис. 1), тело совершает перемещение, по абсолютной величине равное $h_{1} — h_{2}$. Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

$A = mg (h_{1} — h_{2})$.

Высоты $h_{1}$ и $h_{2}$ не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня $B$ (см. рис. 1). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

$A = mgh$,

где $h$ — высота точки $A$ над уровнем $B$.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту $h$ над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

$A = — mgh$.

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.



рис. 2

В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 2). Допустим, что тело массой $m$ по наклонной плоскости высотой $h$ совершает перемещение $vec{s}$, по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести $m vec{g}$ в этом случае надо вычислять по формуле $A = mgs cos alpha$. Но из рисунка видно, что

$cos alpha = frac{h}{s}$.

Поэтому

$A = mgs frac{h}{s} = mgh$.

Мы получили для работы то же самое значение.



рис. 3

Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 3).



рис. 4

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 4. Весь этот путь мы можем мысленно разбить на ряд малых участков: $AA_{1}, A_{1}A_{2}, A_{2}A_{3}$ и т. д. Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути $AB$ можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению $mg$ на изменение высоты тела на ней. Если изменения высот на отдельных участках равны $h_{1}, h_{2}, h_{3}$ и т. д., то работы силы тяжести на них равны $mgh_{1}, mgh_{2}, mgh_{3}$ и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:

$A = mgh_{1} + mgh_{2} + mgh_{3} + cdots = mg (h_{1} + h_{2} + h_{3} + cdots)$.

Но

$h_{1} + h_{2} + h_{3} + cdots = h$.

Следовательно,

$A = mgh$.

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх — отрицательна.

Почему же в технике и быту при подъеме грузов часто пользуются наклонной плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь — это плата »а то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.

Задача. Шарик массой $m$ скатывается по рельсам, образующим круговую петлю радиусом $r$ (рис. 196). Какую работу совершает сила тяжести к моменту, когда шарик достигает высшей точки петли $C$, если в начальный момент он находится на высоте $H$ над нижней точкой петли?



рис. 5

Решение. Работа силы тяжести равна произведению ее значения на разность высот начального и конечного положений шарика. Начальная высота равна $H$, а конечная, как это видно из рисунка, равна $2r$. Следовательно,

$A = mg (H — 2r) = mgh$.

Содержание:

Сила тяжести:

Почему все подброшенные вверх тела падают на Землю ? Почему на санках легко съезжать с горки, а вверх их нужно тянуть?

Подбросьте вверх мяч. Поднявшись на некоторую высоту, он начнёт двигаться вниз и упадёт на Землю. Парашютист, выпрыгнувший из самолёта, падает вниз и после раскрытия парашюта. С появлением дождевой тучи на Землю падает густой дождь. Как бы высоко мы не прыгали вверх, всегда опускаемся на Землю.

Все тела, находящиеся на Земле или вблизи неё, взаимодействуют с ней: Земля притягивает тела, а они притягивают Землю.

Поскольку масса у Земли очень большая, то в результате взаимодействия с нею заметно изменяют свои скорости и положения именно тела, а Земля практически остаётся на месте.

Силу, с которой Земля притягивает к себе любое тело, называют силой тяжести.

От чего зависит сила тяжести

Из опыта с яблоками, выполненного ранее, можем сделать вывод, что на два яблока, подвешенных на пружине, действует сила тяжести больше, чем на одно, так как масса двух яблок больше массы одного. Силу тяжести обозначают Сила тяжести в физике - формулы и определения с примерами

Единицей силы тяжести, как и любой другой, в СИ является один ньютон (1Н). Эта единица названа в честь английского учёного Исаака Ньютона, впервые сформулировавшего основные законы движения тел и законы тяготения. 1 ньютон (1 Н) равен силе тяжести, которая действует на тело массой приблизительно 102 г.

Тогда на тело массой 1кг действует сила тяжести 9,81 Н, т. е. Сила тяжести в физике - формулы и определения с примерами

Как, пользуясь единицей силы 1 Н, определить силу тяжести, которая действует на тело любой массы?

Поскольку на тело массой 1 кг действует сила тяжести 9,81 Н, то на тело массой т будет действовать сила тяжести, в т раз большая.

Чтобы определить силу тяжести Сила тяжести в физике - формулы и определения с примерами, действующую на тело, нужно постоянную для данной местности величину Сила тяжести в физике - формулы и определения с примерами = 9,81 Сила тяжести в физике - формулы и определения с примерами умножить на массу тела Сила тяжести в физике - формулы и определения с примерами, выраженную в килограммах: Сила тяжести в физике - формулы и определения с примерами

Но притяжение существует не только между Землёй и телами на ней или вблизи неё. Все тела притягиваются друг к другу. Например, притягиваются между собой Земля и Луна, Солнце и Земля или другие планеты, корабли в море, предметы в комнате. Вследствие притяжения Земли к Луне на Земле возникают приливы и отливы (рис. 69).

Сила тяжести в физике - формулы и определения с примерами

Вода в океанах поднимается дважды в сутки на несколько метров.

Благодаря силе тяжести атмосфера удерживается возле Земли, реки текут сверху вниз, Луна удерживается возле Земли, планеты двигаются по орбитам вокруг Солнца.

Явление притяжения всех тел Вселенной друг к другу называют всемирным тяготением.

Исаак Ньютон доказал, что сила притяжения между телами тем больше, чем больше массы этих тел и чем меньше расстояние между телами. Если бы сила тяжести на Земле вдруг исчезла, то все незакреплённые на ее поверхности тела от любого небольшого толчка разлетелись бы во все стороны в космическом пространстве.

Каково направление силы тяжести

Опыт. Если взять отвес или привязанный к нити какой-либо предмет (рис. 70), то увидим, что нить с грузиком вследствие действия на него силы тяжести всегда направлена к Земли вдоль прямой, которую называют вертикалью.

Сила тяжести в физике - формулы и определения с примерами

Выполнив этот опыт во всех точках Земли, учёные убедились, что сила тяжести всегда направлена к центру Земли.

Силу тяжести изображают в виде вертикальной стрелки, направленной вниз и приложенной к определённой точке тела (рис. 71 а, б).

Кстати:

Кроме планет с их спутниками вокруг Солнца двигаются малые планеты, которые еще называют астероидами. Наибольшая из них — Церера — имеет статус карликовой планеты и радиусом почти в 20 раз, а по массе в 7500 раз меньше Земли. Сила тяжести на ней настолько мала, что человек, оттолкнувшись от поверхности планеты, мог бы улететь с нее.

Вот как описывает основатель теории космонавтики К,Э. Циолковский в рассказе «Путь к звездам» условия пребывания человека на этом астероиде: «На Земле я могу свободно нести еще одного человека такого же веса, как я. На Весте так же легко могу нести в 30 раз больше. На Земле я могу подпрыгнуть на 50см. На Весте такое же усилие дает прыжок в 30м. Это высота десятиэтажного дома или огромной сосны. Там легко перепрыгивать через рвы и ямы шириной с крупную реку. Можно перепрыгнуть через 15-метровые деревья и дома. И это без разгона».

Сила тяготения

Все тела возле Земли падают на ее поверхность, если их ничто не удерживает. В чем причина этого явления?

Как тела падают на Землю

Рассмотрим фотографию падения шарика, на которой положение шарика фиксировалось на пленке через равные интервалы времени (рис. 45). Если линейкой отмерить расстояние между изображениями шарика в различные моменты времени, то можно заметить, что эти расстояния постепенно увеличиваются. Это свидетельствует о том, что скорость шарика при падении постепенно увеличивается.

Сила тяжести в физике - формулы и определения с примерами

Как увеличивается скорость падающего тела

Если вспомнить определение силы, по которому сила изменяет скорость тела, то можно сделать вывод, что на шарик действует сила, направленная к Земле.

Силу, действующую на каждое тело со стороны Земли, называют силой тяготения.

Измерения показывают, что скорость тела, падающего на поверхность Земли при отсутствии сопротивления воздуха, каждую секунду увеличивается на 9,8 Сила тяжести в физике - формулы и определения с примерами.

Как рассчитать силу тяготения

Если знать массу тела, то можно рассчитать силу тяготения. Способ таких расчетов подсказывают результаты опытов.

Возьмем динамометр и подвесим к нему гирьку массой 102 г, стрелка динамометра остановится на отметке 1 Н. Если подвесить два таких груза, то динамометр покажет силу 2 Н и т. д. С этого опыта можно сделать вывод, что сила тяжести пропорциональна массе тела.

Сила тяготения пропорциональна массе тела:Сила тяжести в физике - формулы и определения с примерами

Коэффициент пропорциональности Сила тяжести в физике - формулы и определения с примерами равен приблизительноСила тяжести в физике - формулы и определения с примерами

Для расчетов при решении задач иногда принимают, чтоСила тяжести в физике - формулы и определения с примерами

Если знать такую зависимость силы тяготения от массы, то можно заранее рассчитать ее значение.

Например, необходимо определить, что покажет динамометр, если на его крючок повесить гирю массой 500 г.

Дано:

Сила тяжести в физике - формулы и определения с примерами

Решение

Сила тяжести в физике - формулы и определения с примерами

Ответ. Стрелка динамометра покажет 4,9 Н.

Какая природа силы тяготения

Сила тяготения является проявлением общего закона природы, действующего во всей Вселенной закона всемирного тяготения. Открытый и сформулированный в XVII в. английским физиком Ньютоном, он утверждает, что сила гравитационного притяжения во Вселенной пропорциональна массам взаимодействующих тел и зависит от расстояния между ними.

Сила тяжести в физике - формулы и определения с примерами

где R — расстояние между телами, m1 и m2 — массы взаимодействующих тел, Сила тяжести в физике - формулы и определения с примерами — гравитационная постоянная.

Сила тяготения, как проявление гравитационного взаимодействия Земли, является следствием взаимодействия всех тел с Землей. Поэтому в расчетах силы тяготения пользуются только массой данного тела. Характеристики Земли отображены в обобщенной форме в коэффициенте Сила тяжести в физике - формулы и определения с примерами

Работа силы тяжести

Каждая сила, действующая на движущееся тело, совершает работу. Проанализируем более подробно работу, совершаемую силой тяжести. При небольших расстояниях от поверхности Земли сила тяжести постоянна и по модулю равна mg. Пусть тело массой m падает с высоты h1 до высоты h(рис. 132). Модуль перемещения Сила тяжести в физике - формулы и определения с примерами равен при этом h1h. Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:
Сила тяжести в физике - формулы и определения с примерами    (1)

Сила тяжести в физике - формулы и определения с примерами
Рис. 132

Высоты h1 и h можно отсчитывать от любого уровня. Это может быть уровень поверхности Земли, пола класса или поверхности стола и т. д. Высоту выбранного уровня принимают равной пулю. Поэтому этот уровень называют нулевым.

Если тело падает с высоты h до нулевого уровня, то работа силы тяжести:

Сила тяжести в физике - формулы и определения с примерами   (2)

Теперь выясним, какую работу совершает сила тяжести, если тело движется не по вертикали. Для этого рассмотрим движение тела по наклонной плоскости. Пусть тело массой m совершило перемещение Сила тяжести в физике - формулы и определения с примерами, равное по модулю длине наклонной плоскости (рис. 133). Работа силы тяжести в этом случае равна: Сила тяжести в физике - формулы и определения с примерами, где Сила тяжести в физике - формулы и определения с примерами — угол между вектором перемещения и вектором силы тяжести. Из рисунка видно, что Сила тяжести в физике - формулы и определения с примерами. Поэтому
Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 133

Мы получили для работы силы тяжести такое же выражение, как и в случае движения тела по вертикали (см. формулу (2)). Отсюда следует, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. Работа силы тяжести определяется только изменением высоты относительно некоторого уровня.

Теперь докажем, что работа силы тяжести определяется формулой (2) при движении по любой траектории. Например, некоторое тело бросили горизонтально с высоты h (рис. 134). Как известно, траекторией такого движения является парабола. Мысленно разобьем траекторию на маленькие участки Сила тяжести в физике - формулы и определения с примерами, такие, что их можно считать прямыми линиями. Каждый из них можно считать маленькой наклонной плоскостью, а движение по траектории AB рассматривать как движение по множеству наклонных плоскостей. Работа силы тяжести на каждой из них равна произведению силы тяжести на изменение высоты. Например, на участке А2А3 работа равна mg(h2-h3). Полную же работу силы тяжести на всем пути найдем, сложив работу на каждом участке:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами
Рис. 134

Таким образом, работа силы тяжести не зависит от формы траектории движения тела и всегда равна произведению модуля силы тяжести на разность высот в начальном и конечном положениях тела, т. е. вычисляется но формуле (1). Отсюда следует, что если тело движется по замкнутой траектории, где начальное и конечное положения тела совпадают, то работа силы тяжести равна нулю. Такие силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положениями тела в пространстве, называются потенциальными или консервативными. Другое определение потенциальных сил: это такие силы, работа которых по замкнутой траектории равна нулю.

Для потенциальных сил можно ввести понятие потенциальной энергии. Действительно, формула (I) может быть переписана следующим образом:

A = mg(hl — h2)= -(mgh2— mgh1).    (3)

Правая часть этого равенства представляет собой изменение величины mgh, взятое с противоположным знаком.

Понятие кинетической энергии, изменение которой равно работе сил, действующих на тело. Теперь мы встретились еще с одной величиной, изменение которой (но с противоположным знаком) тоже равно работе силы — в данном случае работе силы тяжести. Величину, равную mgh, называют потенциальной энергией П тела в гравитационном поле. Тогда формулу (3) можно записать в виде:
Сила тяжести в физике - формулы и определения с примерами    (4)

Говорят, что работа силы тяжести равна убыли потенциальной энергии тела в гравитационном поле Земли.
Если тело падает с высоты h до нулевого уровня, то работа силы тяжести равна его начальной потенциальной энергии:
Сила тяжести в физике - формулы и определения с примерами

Следовательно, потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты. Например, этим пользуются при забивании свай на строительных площадках (рис. 135). Чтобы поднять тело с нулевого уровня на эту же высоту, должна быть совершена работа другой силой, направленной против силы тяжести.

Сила тяжести в физике - формулы и определения с примерами
Рис. 135

Потенциальная энергия зависит от положения тела относительно нулевого уровня и, следовательно, от координат тела. Так как пулевой уровень может быть выбран произвольно, то и потенциальная энергия определяется неоднозначно. Однако физический смысл имеет разность потенциальных энергий тела ΔП, а эта разность не зависит от выбора нулевого уровня.

Сила тяжести является силой, с которой Земля притягивает тело. Тело обладает потенциальной энергией, потому что оно взаимодействует с Землей. Не было бы Земли, не было бы и силы притяжения, а следовательно, и потенциальной энергии тела. Поэтому потенциальная энергия — это энергия взаимодействия, в данном случае тела и Земли.

Главные выводы:

  1. Работа силы тяжести не зависит от формы траектории, а определяется начальным и конечным положениями тела.
  2. Работа силы тяжести равна нулю, если тело возвращается в исходное положение.
  3. Сила тяжести является потенциальной силой.
  4. Потенциальная энергия тела, поднятого на некоторую высоту, равна работе силы тяжести при падении тела с этой высоты.
  5. Потенциальная энергия — это энергия взаимодействия тел.

Сила тяжести и напряженность гравитационного поля

Как вы знаете, по современным научным представлениям взаимное притяжение между телами осуществляется посредством особого вида материи — гравитационного поля. Каждое тело вокруг себя создает гравитационное поле. Как и другие физические поля, гравитационное поле имеет свою силовую характеристику — напряженность гравитационного поля.

Напряженность гравитационного поля — это векторная физическая величина, равная отношению силы притяжения, действующей на материальную точку (тело) в гравитационном поле, к его массе:

Сила тяжести в физике - формулы и определения с примерами

Где Сила тяжести в физике - формулы и определения с примерами — напряженность гравитационного поля, Сила тяжести в физике - формулы и определения с примерами — масса материальной точки (тела), Сила тяжести в физике - формулы и определения с примерами — сила притяжения, действующая на материальную точку в гравитационном поле.

От чего зависит модуль напряженности гравитационного поля

Чтобы ответить на этот вопрос, определим модуль напряженности гравитационного поля для произвольной точки на поверхности Земли и на высоте Сила тяжести в физике - формулы и определения с примерами от поверхности Земли:

Сила тяжести в физике - формулы и определения с примерами

Здесь Сила тяжести в физике - формулы и определения с примерами и Сила тяжести в физике - формулы и определения с примерами — силы притяжения на поверхности Земли и на высоте h соответственно, Сила тяжести в физике - формулы и определения с примерами — масса Земли, Сила тяжести в физике - формулы и определения с примерами — радиус Земли.

  • Заказать решение задач по физике

Модуль напряженности гравитационного поля в некоторой точке прямо пропорционален массе источника данного поля и обратно пропорционален

квадрату расстояния до этой точки. Модуль напряженности гравитационного поля не зависит от массы тела, помещенного в это поле. Вектор напряженности гравитационного поля в произвольной точке поля направлен вдоль радиуса к центру источника поля (b). В данной точке гравитационного поля модуль и направление напряженности гравитационного поля совпадают с модулем и направлением ускорения свободного падения.

Сила тяжести в физике - формулы и определения с примерами

Являются ли напряженность гравитационного поля и ускорение свободного падения одной и той же величиной

На помещенное в гравитационное поле произвольное тело действует сила притяжения со стороны источника поля. В результате тело получает ускорение (ускорение свободного падения), направленное к центру источника поля (например, центру Земли). Это ускорение сообщается телу действующей на него силой тяжести гравитационного поля.

Сила тяжести — это сила, с которой Земля (планета) притягивает тела. Сила тяжести равна произведению массы тела, помещенного в гравитационное поле Земли (планеты), на ускорение свободного падения:

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести всегда приложена к центру массы тела и направлена вертикально вниз (перпендикулярно к горизонтальной поверхности) к центру Земли (планеты) (с).

Сила тяжести в физике - формулы и определения с примерами

Из вышесказанного ясно, что понятия «напряженность гравитационного поля» и «ускорение свободного падения» имеют разный физический смысл. Так, напряженность гравитационного поля появляется в случае возникновения поля, а ускорение свободного падения возникает в результате действия силы тяжести при помещении в это поле произвольного тела (пробное тело).

Сила тяжести и вес тела

Если выпустить из рук карандаш, он обязательно упадет. Если поставить рюкзак на скамейку, она (хоть и незаметно для глаз) прогнется. Если подвесить к резиновому шнуру какое-нибудь тело, шнур растянется. Все это — следствия притяжения Земли. При этом репортажи с космических станций демонстрируют нам вроде бы «исчезновение» земного притяжения — космонавты и все вещи на борту находятся в состоянии невесомости.

Гравитационное взаимодействие:

Почему любой предмет, например выпущенный из руки карандаш, капля дождя, лист дерева и т. д., падает вниз? Почему стрела, выпущенная из лука, не летит все время прямо, а в конце концов падает на землю? Почему Луна движется вокруг Земли? Причина всех этих явлений в том, что Земля притягивает к себе все тела (рис. 20.1).

При этом все тела притягивают к себе Землю. Например, притяжение к Луне вызывает на Земле приливы и отливы (рис. 20.2). В результате притяжения к Солнцу наша планета и все другие планеты Солнечной системы движутся вокруг Солнца по определенным орбитам. В 1687 г. Исаак Ньютон сформулировал закон, согласно которому между всеми телами Вселенной существует взаимное притяжение. Такое взаимное притяжение объектов называют гравитационным взаимодействием или всемирным тяготением. Опираясь на опыты и математические расчеты, Ньютон доказал, что интенсивность гравитационного взаимодействия увеличивается с увеличением масс взаимодействующих тел. Именно поэтому легко убедиться в том, что всех нас притягивает Земля, и при этом мы совсем не ощущаем притяжение соседа по парте.

В физике силу гравитационного притяжения Земли, действующую на тела вблизи ее поверхности*, называют силой тяжести.

Сила тяжести Сила тяжести в физике - формулы и определения с примерами — это сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее.

Сила тяжести приложена к телу, которое притягивается Землей, и направлена вертикально вниз, к центру Земли (рис. 20.3).

Многочисленными опытами доказано, что сила тяжести, действующая на тело, прямо пропорциональна массе этого тела: Сила тяжести в физике - формулы и определения с примерами где Сила тяжести в физике - формулы и определения с примерами— значение силы тяжести; m — масса тела; g — коэффициент пропорциональности, который называют ускорением свободного падения.

Будем считать, что, когда говорят «вблизи поверхности Земли», имеют в виду расстояние, не превышающее нескольких десятков километров.

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Сила тяжести в физике - формулы и определения с примерами

Вблизи поверхности Земли ускорение свободного падения равно приблизительно 9,8 ньютона на килограмм: Сила тяжести в физике - формулы и определения с примерами Значение ускорения свободного падения несущественно изменяется на экваторе и полюсах Земли (рис. 20.4), при подъеме над поверхностью Земли и при спуске в шахту. Используя рис. 20.4, определите, на сколько сила тяжести, действующая на вас, на экваторе меньше, чем на полюсе.

Сила тяжести в физике - формулы и определения с примерами

Что физики называют весом тела

Из-за притяжения к Земле все тела сжимают или прогибают опору либо растягивают подвес. Сила, которая характеризует такое действие тел, называется весом тела (рис. 20.5).

Сила тяжести в физике - формулы и определения с примерами

Вес тела Сила тяжести в физике - формулы и определения с примерами — это сила, с которой вследствие притяжения к Земле тело давит на горизонтальную опору или растягивает вертикальный подвес. Единица веса в СИ, как и любой другой силы,— ньютон Сила тяжести в физике - формулы и определения с примерами Если тело находится в состоянии покоя или прямолинейного равномерного движения, то его вес совпадает по направлению с силой тяжести и равен ей по значению: P=mg. Однако в отличие от силы тяжести, которая приложена к телу, вес приложен к опоре или подвесу (рис. 20.6).

Для упрощения расчетов в случаях, когда большая точность не существенна, можно считать, что g= 10 Н/кг.

Сила тяжести в физике - формулы и определения с примерами

Состояние невесомости

Вы наверняка хорошо знаете термин «невесомость», но его значение многие понимают неправильно. Например, считают, что невесомость — это состояние, которое наблюдается только в космосе, где нет воздуха, или там, где отсутствует гравитация. Но это не так! Отсутствие воздуха само по себе не вызывает невесомости, а от гравитации вообще не спрячешься — во Вселенной нет ни одного уголка, где бы не действовали силы всемирного тяготения*. На самом деле невесомость — это отсутствие веса. Уберите у тела опору или подвес — и оно окажется в состоянии невесомости. (Обратите внимание: сопротивление воздуха тоже является своего рода опорой!)

Невесомость — это такое состояние тела, при котором тело не действует на опору или подвес. Тело вблизи поверхности Земли находится в состоянии невесомости, если на него действует только одна сила — сила тяжести. На короткое время невесомость легко создать и дома. Можно, например, подпрыгнуть — и вы на мгновение окажетесь в состоянии невесомости: в данном случае, пока выдвигаетесь вниз, сопротивление воздуха пренебрежимо мало и можно считать, что на вас действует только сила тяжести. Постоянно в состоянии невесомости находятся космические орбитальные станции и все, что на них находится (рис. 20.7). Это связано с тем, что космические корабли «постоянно падают» на Землю из-за ее притяжения и в то же время остаются на орбите благодаря своей огромной скорости. У нетренированного человека длительное пребывание в состоянии невесомости, как правило, сопровождается тошнотой, нарушением работы мышц, вестибулярного аппарата**, нервными расстройствами, именно поэтому космонавты проходят серьезную физическую подготовку (рис. 20.8).

Плотность материи в нашей Вселенной очень мала (2-3 атома Гидрогена на 1 м3), потому во Вселенной в среднем очень мала и гравитация. Ее называют микрогравитацией. Вестибулярный аппарат — орган чувств у людей и позвоночных животных, воспринимающий изменение положения тела в пространстве и направление движения. Этот орган отвечает, например, за способность человека различать в темноте, где верх, а где низ.

Сила тяжести в физике - формулы и определения с примерами

Итоги:

Во Вселенной все тела притягиваются друг к другу. Такое взаимное притяжение тел называют всемирным тяготением. Сила тяжести — сила, с которой Земля притягивает к себе тела, находящиеся на ее поверхности или вблизи нее. Сила тяжести вычисляется по формуле Сила тяжести в физике - формулы и определения с примерами и направлена вертикально вниз, к центру Земли. Вес Сила тяжести в физике - формулы и определения с примерами тела — это сила, с которой вследствие притяжения к Земле тело действует на горизонтальную опору или вертикальный подвес. Следует различать силу тяжести и вес тела: сила тяжести приложена к самому телу, а вес — к опоре или подвесу; вес тела равен по значению силе тяжести (P=mg) только в состоянии покоя тела или его равномерного прямолинейного движения. Когда тело движется под действием только силы тяжести, то оно находится в состоянии невесомости (его вес равен нулю).

  • Сила упругости в физике и закон Гука
  • Деформация в физике
  • Плотность вещества в физике
  • Сила трения в физике
  • Инерция в физике
  • Масса тела в физике
  • Сила в физике
  • Силы в механике

Работа силы тяжести. Консервативные силы

Подробности
Обновлено 13.08.2018 12:25
Просмотров: 1001

«Физика — 10 класс»

Вычислим работу силы тяжести при падении тела (например, камня) вертикально вниз.

В начальный момент времени тело находилось на высоте hx над поверхностью Земли, а в конечный момент времени — на высоте h2 (рис. 5.8). Модуль перемещения тела |Δ| = h1 — h2.

Направления векторов силы тяжести T и перемещения Δ совпадают. Согласно определению работы (см. формулу (5.2)) имеем

А = |Т| |Δ|cos0° = mg(h1 — h2) = mgh1 — mgh2.         (5.12)

Пусть теперь тело бросили вертикально вверх из точки, расположенной на высоте h1 над поверхностью Земли, и оно достигло высоты h2 (рис. 5.9). Векторы Т и Δ направлены в противоположные стороны, а модуль перемещения |Δ| = h2 — h1. Работу силы тяжести запишем так:

А = |Т| |Δ|cos180° = -mg(h2 — h1) = mgh1 — mgh2.         (5.13)

Если же тело перемещается по прямой так, что направление перемещения составляет угол а с направлением силы тяжести (рис. 5.10), то работа силы тяжести равна:

А = |Т| |Δ|cosα = mg|BC|cosα.

Из прямоугольного треугольника BCD видно, что |BC|cosα = BD = h1 — h2. Следовательно,

А = mg(h1 — h2) = mgh1 — mgh2.         (5.14)

Это выражение совпадает с выражением (5.12).

Формулы (5.12), (5.13), (5.14) дают возможность подметить важную закономерность. При прямолинейном движении тела работа силы тяжести в каждом случае равна разности двух значений величины, зависящей от положений тела, определяемых высотами h1 и h2 над поверхностью Земли.

Более того, работа силы тяжести при перемещении тела массой т из одного положения в другое не зависит от формы траектории, по которой движется тело. Действительно, если тело перемещается вдоль кривой ВС (рис. 5.11), то, представив эту кривую в виде ступенчатой линии, состоящей из вертикальных и горизонтальных участков малой длины, увидим, что на горизонтальных участках работа силы тяжести равна нулю, так как сила перпендикулярна перемещению, а сумма работ на вертикальных участках равна работе, которую совершила бы сила тяжести при перемещении тела по вертикальному отрезку длиной h1 — h2. Таким образом, работа силы тяжести при перемещении вдоль кривой ВС равна:

А = mgh1 — mgh2.

Работа силы тяжести не зависит от формы траектории, а зависит только от положений начальной и конечной точек траектории.

Определим работу А при перемещении тела по замкнутому контуру, например по контуру BCDEB (рис. 5.12). Работа А1 силы тяжести при перемещении тела из точки В в точку D по траектории BCD: А1 = mg(h2 — h1), по траектории DEB: А2 = mg(h1 — h2).

Тогда суммарная работа А = А1 + А2 = mg(h2 — h1) + mg(h1 — h2) = 0.

При движении тела по замкнутой траектории работа силы тяжести равна нулю.

Итак. работа силы тяжести не зависит от формы траектории тела; она определяется лишь начальным и конечным положениями тела. При перемещении тела по замкнутой траектории работа силы тяжести равна нулю.

Силы, работа которых не зависит от формы траектории точки приложения силы и по замкнутой траектории равна нулю, называют консервативными силами.

Сила тяжести является консервативной силой.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы сохранения в механике — Физика, учебник для 10 класса — Класс!ная физика

Импульс материальной точки —
Закон сохранения импульса —
Реактивное движение. Успехи в освоении космоса —
Примеры решения задач по теме «Закон сохранения импульса» —
Механическая работа и мощность силы —
Энергия. Кинетическая энергия —
Примеры решения задач по теме «Кинетическая энергия и её изменение» —
Работа силы тяжести. Консервативные силы —
Работа силы упругости. Консервативные силы —
Потенциальная энергия —
Закон сохранения энергии в механике —
Работа силы тяготения. Потенциальная энергия в поле тяготения —
Примеры решения задач по теме «Закон сохранения механической энергии» —
Основное уравнение динамики вращательного движения —
Закон сохранения момента импульса. Кинетическая энергия абсолютно твёрдого тела, вращающегося относительно неподвижной оси —
Примеры решения задач по теме «Динамика вращательного движения абсолютно твёрдого тела»

2010-03-24 22:30

Применим результат, полученный в § 90, для определения работы, которую совершает сила тяжести

 при движении тела вниз по наклонной плоскости (рис. 160).

Проекция

 перемещения

 на направление силы тяжести, т. е. на вертикаль, равна высоте

 наклонной плоскости. Значит, согласно формуле (90.3) работа силы тяжести при перемещении тела вдоль наклонной плоскости из точки

 в точку

 будет равна силе тяжести, умноженной на высоту наклонной плоскости:


. (94.1)


Рис. 160. При скольжении по наклонным плоскостям работа силы тяжести определяется высотой
, на которую опускается груз, и не зависит от угла наклона плоскости


Рис. 161. Любой путь можно представить как совокупность большого числа малых участков наклонных плоскостей

Тот же результат получится и для наклонной плоскости

. Таким образом, работа силы тяжести не зависит от угла наклона; она зависит только от высоты наклонной плоскости; сила тяжести совершила бы такую же работу и в том случае, если бы груз опустился на такое же расстояние прямо по вертикали.

Отсюда мы можем сделать и более общий вывод: по какому бы пути ни опускался груз, сила тяжести совершает работу

, где

 — высота, на которую опустился груз. Действительно, любой путь мы можем представить себе состоящим из большого числа участков различных наклонных плоскостей (рис. 161). Работа на каждом из участков определяется высотой, на которую опустился груз при перемещении по этому участку. Работа же на всем пути равна действующей на груз силе тяжести, умноженной на полную высоту, на которую опустился груз.

Аналогичный вывод можно сделать и для случая подъема данного тела по наклонной плоскости или какому-либо другому пути. В этом случае работа против силы тяжести также не зависит от формы пути; она зависит только от высоты, на которую поднято тело.

1. Определение работы

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы

A = Fs     (1)

В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы

A = –Fs     (2)

В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

A = 0      (3)

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

1 Дж = 1 Н * м.

? 1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?

Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

? 2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

A = Fs cos α     (4)

? 3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.

? 4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты hн до конечной высоты hк.

Если тело движется вниз (hн > hк, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (hн < hк, рис. 28.2, б), то работа силы тяжести отрицательна.

В обоих случаях работа силы тяжести

A = mg(hн – hк).     (5)

Найдем теперь работу силы тяжести при движении под углом к вертикали.

? 5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.

а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

Aт = mg(hн – hк),

где hн – начальная высота тела, hк – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

? 6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?

3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

F = kx.     (6)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

? 7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

A = (kx2)/2.     (7)

? 8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от xн до xк работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

? 9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

? 10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

? 11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

P = A/t.      (9)

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

1 Вт = 1 Дж/c.

? 12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv.     (10)

? 13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

? 14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м3, а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Понравилась статья? Поделить с друзьями:
  • Как добавить бизнес карту в сбербанк онлайн на телефоне андроид
  • Инфраструктура поддержки бизнеса это микровнешняя среда бизнеса
  • Как добавить личный рекламный аккаунт в бизнес менеджер фейсбук
  • Иоанновский монастырь на карповке официальный сайт время работы
  • Как добиться ремонта в подъезде от управляющей компании образец