Ad
Ответы на сканворды и кроссворды
Мощность
Физическая величина 8 букв
Похожие вопросы в сканвордах
- Физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она совершена 8 букв
- Физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени 8 букв
- Физическая величина, измеряемая работой, произведенной за единицу времени 8 букв
Похожие ответы в сканвордах
- Мощность — Производственные объекты (электростанции, заводы, машины) 8 букв
- Мощность — Физическая величина, характеризующая работу совершаемую в единицу времени 8 букв
- Мощность — Физическая величина 8 букв
- Мощность — Производная работы по времени 8 букв
- Мощность — Работа, совершенная в единицу времени 8 букв
- Мощность — Толщина пласта, слоя (минералов, каменного угля, воздуха и т. п.) 8 букв
- Мощность — Физическая величина, характеризующая работу, совершаемую в единицу времени 8 букв
- Мощность — Физическая величина, измеряемая работой, произведенной за единицу времени 8 букв
- Мощность — Физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она совершена 8 букв
- Мощность — Фзич. величина 8 букв
- Мощность — Физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени 8 букв
- Мощность — Величина, характеризующая максимальные возможности промышленности, предприятия и т. п. по выпуску продукции за год 8 букв
- Мощность — Физическая величина, равная произведенной чем-либо работы в единицу времени 8 букв
- Мощность — Количество символов образующих некоторый алфавит 8 букв
Физика, 10 класс
Урок 13. Работа. Мощность. Энергия. Закон сохранения механической энергии
Перечень вопросов, рассматриваемых на уроке:
1. Работа
2. Мощность
3. Механическая энергия
4. Закон сохранения механической энергии.
Глоссарий по теме
Работа постоянной силы равна произведению модулей силы и перемещения точки приложения силы и косинуса угла между ними.
Мощность – отношение работы к интервалу времени, за который эта работа совершена.
Кинетическая энергия– энергия, которой обладает движущееся тело.
Кинетическая энергия материальной точки – величина равная половине произведения массы материальной точки на квадрат её скорости.
Теорема об изменении кинетической энергии: изменение кинетической энергии материальной точки при её перемещении равно работе, совершённой силой, действующей на точку при этом перемещении.
Если на точку действуют несколько сил, то изменение её кинетической энергии равно алгебраической сумме работ всех сил, действующих на неё.
Работа силы тяжести зависит только от положений начальной и конечной точек траектории и не зависит от формы траектории. При движении тела по замкнутой траектории работа силы тяжести равна нулю.
Консервативными силами называют силы, работа которых не зависит от формы траектории точки приложения силы и по замкнутой траектории равна нулю.
Работа силы упругости при растяжении пружины, т.е. когда направление силы противоположно перемещению тела, меньше нуля. Если начальное и конечное состояния пружины совпадают, то суммарная работа силы упругости при деформации пружины равна нулю.
Потенциальной энергией тела в поле силы тяжести называют величину, равную произведению массы тела на ускорение свободного падения и на высоту тела над поверхностью Земли.
Потенциальной энергией упругодеформированного тела называют величину, равную половине произведения коэффициента упругости тела на квадрат удлинения или сжатия.
Потенциальная энергия – энергия взаимодействия тел, обусловленная их взаимным расположением или взаимным расположением частей тела.
Полная механическая энергия равна сумме кинетической и потенциальной энергий тел, входящих в систему.
Закон сохранения энергии – энергия не создаётся и не уничтожается, а только превращается из одной формы в другую.
Основная и дополнительная литература по теме урока
Мякишев Г.Я., Буховцев Б.Б, Сотский Н.Н. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 131-147.
Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009. С.49-56.
ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.
Теоретический материал для самостоятельного изучения
Влияние на тело сил, приводящее к изменению модуля их скорости, характеризуется величиной, которая зависит как от сил, так и от перемещения тел. Эта величина в механике называется работой силы, определяется по формуле:
Эта формула справедлива в случае, когда проекция силы на смещение постоянна.
Если есть угол между силой и смещением, то проекция силы равна произведению силы на косинус этого угла.
В этом случае работа постоянной силы равна произведению модулей силы и смещения точки приложения силы и косинуса угла между ними.
Работа по сравнению с силой и смещением — это не вектор, а скалярная величина. Она может быть, отрицательной равной нулю или положительной. Таким образом, знак работы определяется знаком косинуса угла между силой и перемещением.
Если сила F перпендикулярна перемещению тела, то работа, этой силой равна нулю. Это тот случай, когда действует сила, но тело не двигается.
Если на тело действует несколько сил, проекция результирующей силы на перемещение равна сумме проекций отдельных сил.
Fr = F1r+F2r+…
Поэтому суммарная работа, (алгебраическая сумма работ всех сил), равна работе результирующей силы.
В жизни важно те только совершение работы, но и время, за которое выполняется работа. Работу мы можем делать быстро и медленно. Отношение работы к временному интервалу, за который выполняется эта работа называется мощностью.
Как вы думаете, что необходимо для движения тела? Да, энергия необходима. Энергия характеризует способность тела (или системы тел) совершать работу. Кинетическая энергия – энергия, которой обладает движущееся тело
И энергия может быть кинетической и потенциальной.
Кинетическая энергия материальной точки равна половине массы материальной точки на квадрат её скорости:
Теорема об изменении кинетической энергии: изменение кинетической энергии материальной точки при её перемещении равно работе силы, действующей на точку во время этого перемещении.
Работа силы тяжести не зависит от формы траектории, а зависит только от положений начальной и конечной точек траектории
А = mgh1 – mgh2.
При движении тела по замкнутой траектории работа силы тяжести равна нулю.
Силы, работа которых не зависит от формы траектории точки приложения силы и на замкнутой траектории равна нулю, называют консервативными силами.
Работа при растяжении пружины силы упругости, когда направление силы совпадает с направлением движения тела, принимает положительные значения и определяется по формуле:
В случае при увеличении деформации пружины, когда сила упругости, действующая на тело со стороны пружины, направлена противоположно деформации, работа силы упругости отрицательна:
Согласно теореме, об изменении кинетической энергии ΔЕк = Ек2 – Ек1 работа силы, действующей на тело, равна изменению его кинетической энергии:
Если силы взаимодействия между телами консервативны, то работу сил можно представить, как разность двух значений некоторой величины, зависящей от взаимного расположения тел или частей одного тела: А = mgh1 – mgh2, работы силы тяжести
и работы силы упругости.
Величина, равная произведению массы m тела на ускорение свободного падения g и высоту h тела над поверхностью Земли, называется потенциальной энергией тела в поле силы тяжести.
Закон сохранения механической энергии:
В изолированной системе, в которой действуют консервативные силы, механическая энергия сохраняется.
Е = Ек + Еп = const
Закон сохранения механической энергии является частным случаем общего закона сохранения энергии: энергия не создаётся и не разрушается, а преобразуется из одной формы в другую.
Примеры и разбор решения заданий
1.
Тело движется вдоль оси ОХ под действием силы F = 2 Н, направленной вдоль этой оси. На рисунке приведён график зависимости проекции скорости vх тела на эту ось от времени t. Какую мощность развивает эта сила в момент времени t = 3 с?
Решение: по графику проекция скорости в момент времени 3с, равна 5 м/с. Мощность, развиваемая силой F для тела, движущегося со скоростью можно найти по формуле
Ответ: 10 Вт
2. Троллейбус массой 15 т трогается с места с ускорением 1,4 м/с2. Найти работу силы тяги и работу силы сопротивления на первых 10 м пути, если коэффициент сопротивления равен 0,05. Каково изменение кинетической энергии автобуса?
Дано:
m = 15т = 15 ·103кг
S = 10м
а = 1,4 м/с2
µ = 0,05
Найти: Ат; Ас; Ек
Запишем уравнение второго закона Ньютона:
в проекции на ось ОХ:
ma = Fт – Fтр
Fтр = µmg → Fт = ma + µmg = m(a+ µg);
По определению работы:
Ат = Fт S = m(a+ µg)S ;
Aт = 15 ·103 кг (1,4 м/с2+0,05 ·10 м/с2) ·10 м = 285 кДж
Работа силы сопротивления: Ас = -FтрS = — µmgS
Ас = -0,05·15·103 кг·10 м/с2·10м = -75 кДж
Кинетическая энергия определяется по формуле:
Ек = mv2/2. Скорость определим по формуле:
Ек = 15·103 кг·14 м/с2 = 210 кДж
Ответ: Ат = 285 кДж; Ас = -75 кДж; Ек = 210 кДж.
Содержание:
Работа, мощность и энергия:
Мы часто слышим от друзей: «Я сегодня выполнил большую работу: выучил наизусть стихотворение и решил пять задач по математике». Но с точки зрения физики никакой работы не совершено, даже если выучить наизусть целую поэму. Что же такое работа в физике?
В физике работа оценивает то, что вызвала сила, действуя на движущееся тело. Покажем это на примерах. Рассмотрите внимательно рисунок 216. Что общего в результатах действия силы тяжести на мяч (рис. 216, а), силы давления газа на пулю в пистолете (рис. 216, б) и силы упругости сжатой пружины на шарик (рис. 216, в) после пережигания нити? Все перечисленные силы вызывают разгон тел (мяча, пули, шарика), т. е. увеличение скорости движения.
Л может ли сила, действующая на движущееся тело, уменьшать его скорость? Подбросьте мяч и наблюдайте за его движением вверх (рис. 217). Теперь сила тяжести уменьшает скорость его движения. Во всех случаях, когда сила изменяет скорость движения (увеличивает или уменьшает), говорят, что сила совершает механическую работу.
Механическая работа является физической величиной. Ее значение можно рассчитать. Рассмотрим самый простой случай: направление силы совпадает с направлением движения. Например, идет разгон спортивных саней (рис. 218). Изменение скорости саней, а значит, и работа по их разгону зависят от значения действующей силы (силы спортсменов, разгоняющих сани) и от пройденного санями пути. Чем больше сила и путь, тем большая совершается работа. Этот вывод справедлив для всех движущихся под действием силы тел.
Таким образом, механическая работа — физическая величина, пропорциональная действующей на тело силе и пройденному пути.
Обозначим работу буквой А. Тогда, если направление силы совпадает с направлением движения тела,
Единицей работы в СИ является 1 джоуль (1 Дж). Названа она в честь известного английского физика Дж. П. Джоуля. Один джоуль — это работа, совершаемая силой 1 Н на пути 1 м.
1 джоуль = 1 ньютон • 1 метр.
Для измерения большой работы используют кратные джоулю единицы:
В случае малой работы применяются дольные единицы:
Из формулы работы следует, что если есть силы, но нет движения, то нет и работы. Например, сила тяжести, действующая на лежащий на столе мяч (рис. 219, а), работы не совершает, а в случае падающего мяча (рис. 219, б) — совершает.
Сила не всегда увеличивает скорость движения тела. Так, при движении мяча вверх (см. рис. 217) сила тяжести замедляет его движение. Аналогично при скольжении шайбы по льду сила трения уменьшает скорость движения шайбы. Работу силы (тяжести, трения) в подобных случаях считают отрицательной.
Но положительная и отрицательная работы могут совершаться одновременно и даже быть равными по абсолютной величине. В этом случае скорость движения постоянна. Например, электропоезд на данном участке пути движется равномерно. Это значит, что равнодействующая сил (тяги двигателя и сопротивления движению) равна нулю. По и сила тяги, и сила сопротивления совершают работу. Только работа силы тяги а силы сопротивления
Сумма же их равна 0, т. е.
Главные выводы:
- Механическая работа характеризует результат действия силы на движущееся тело и пропорциональна действующей на тело силе и пройденному телом пути.
- Силы, ускоряющие движение тела; совершают положительную работу.
- Силы, замедляющие движение тела, совершают отрицательную работу.
- Единица работы в СИ — 1 джоуль (1 Дж).
Пример решения задачи:
Подъемный кран равномерно поднимает с земли бетонную плиту массой m = 500 кг на один из этажей строящегося дома. Сила упругости троса при этом совершает работу А = 100 кДж. Определите, на какой этаж была поднята плита, если высота одного этажа Чему равна работа равнодействующей сил, приложенных к плите? Коэффициент
примите равным
Дано:
Решение:
При равномерном подъеме сила упругости троса равна силе тяжести, действующей на плиту:
Работа силы упругости Высота подъема
— число этажей. Тогда
Отсюда
Так как движение плиты равномерное, то равнодействующая сил, приложенных к ней, и работа
Ответ: плита поднята на 6-й этаж; работа равнодействующей сил
Полезная и совершённая работа
Оценивая работу машины, механизма и др., говорят об их коэффициенте полезного действия (КПД). Но что такое КПД? Что означают слова «полезного действия»? А что такое неполезное действие?
Рассмотрим ситуацию: идет уборка картофеля на поле. Фермер поднимает картофель в ведре в кузов автомашины (рис. 221), выгружает, а ведро опускает на землю. Механическую работу совершает мускульная сила фермера, поднявшего ведро массой, например, = 2,0 кг и картофель массой m = 10,0 кг на высоту h = 1,5 м. Какая работа здесь является полезной?
Цель фермера — погрузить в кузов картофель. Исходя из этого, полезной работой является работа по подъему картофеля: А вот работа но подъему самого ведра не является полезной:
Вся же совершенная (полная работа) равна:
Какую долю составляет полезная работа от совершенной?
Обозначим отношение буквой
(эта) и назовем коэффициентом полезного действия (КПД). Тогда
КПД, как правило, выражают в процентах.
Таким образом, КПД (эффективность работы) в данном случае равен 83 %.
Рассмотрим еще один пример. Дети разгоняют санки, действуя силой F в направлении их движения (рис. 222). Совершенная (полная) работа здесь Цель детей — увеличить скорость движения санок. Но на санки действует еще сила трения скольжения
Она тормозит движение санок. Значит, работа детей по преодолению силы трения не является полезной:
Полезной же работой была
Тогда доля полезной работы (КПД)
Физическая величина, равная отношению полезной работы к совершенной (полной), называется коэффициентом полезного действия.
А могут ли механизм, машина, человек работать так, чтобы КПД = 100 %, т. е. чтобы вся совершенная работа была полезной?
Ученые неоднократно пытались создать такую машину (рис. 223), но все попытки оказались безуспешными. (Самостоятельно познакомьтесь в Интернете или справочной литературе с информацией о вечном двигателе.) В работе любой машины, механизма всегда есть неполезная работа, идущая на преодоление трения, сопротивления. А значит, КПД всегда меньше 100 %. А вот сделать неполезную работу минимальной означает повысить КПД.
Главные выводы:
- Совершенная (т. е. полная) механическая работа всегда больше полезной.
- КПД показывает, какую долю составляет полезная работа от всей совершенной.
- Чем больше полезная работа, тем выше КПД.
- КПД всегда меньше 100 %.
Пример решения задачи:
При подъеме картофеля из хранилища глубиной h = 3,6 м подъемным устройством с КПД = 90 % совершена работа
= 40 кДж. Сколько мешков картофеля массой
= 40 кг каждый было поднято из хранилища? Примите
Дано:
Решение:
Зная совершенную работу и КПД, можно найти полезную работу по подъему мешков картофеля:
Полезная работа — это работа подъемного устройства по преодолению силы тяжести, действующей на картофель:
Масса где N — число мешков картофеля. Тогда
откуда
Ответ: N = 25 мешков.
Мощность и единицы мощности
Приобретая автомобиль (рис. 226), газонокосилку, микроволновую печь (рис. 227) и др., человек интересуется их мощностью. Именно мощность является паспортной характеристикой машин и механизмов. Что же такое мощность? Почему так важно ее знать?
Рассмотрим пример. Человек лопатой копает яму для погреба в течение нескольких дней. Такую же яму экскаватор (рис. 228) выкопает за несколько минут. Работа выполняется одинаковая. Одинаковая масса грунта поднимается на одну и ту же высоту. Но быстрота совершения работы человеком и экскаватором разная. За единицу времени экскаватор выполняет во много раз большую работу, чем человек. Для описания быстроты совершения работы вводится мощность.
Физическая величина, равная отношению работы к промежутку времени, за который эта работа совершена, называется мощностью. Обозначается мощность буквой Р.
За единицу мощности в СИ принимается мощность, при которой действующая на тело сила за время t = 1 с совершает работу А = 1 Дж. Эта единица мощности называется ватт (Вт) в честь английского изобретателя Дж. Уатта. Для измерения больших мощностей используют кратные единицы: гектоватт (гВт), киловатт (кВт), мегаватт (МВт). Обратите внимание:
Для малых мощностей употребляются дольные единицы — милливатт (мВт), микроватт (мкВт):
В быту часто необдуманно единицу мощности киловатт принимают за единицу работы. Но работа из чего следует, что единицей работы может быть только киловатт-час (кВт • ч), но не киловатт (кВт). Выразим мощность через другие единицы — силу и скорость. Мощность
но работа
путь
Тогда
Мощность пропорциональна силе, совершающей работу, и скорости движения. Тогда при постоянной мощности чем меньше скорость, тем больше сила. Вот почему водитель, трогаясь с места или поднимаясь в гору (рис. 229), когда требуется большая сила, едет на малой скорости. Тем самым он увеличивает силу тяги двигателя автомобиля.
Главные выводы
- Мощность — физическая величина, характеризующая быстроту совершения работы.
- Единицей мощности в СИ является 1 ватт.
- Одинаковую мощность можно получить либо при большой скорости и небольшой силе, либо при малой скорости и большой силе.
Для любознательных
В автомобилестроении по традиции используют старинную единицу мощности — лошадиную силу (л. с.). С помощью рисунка сформулируйте самостоятельно определение мощности в 1 лошадиную силу.
Запишем связь 1 л. с. и ватта: 1 л. с. = 736 Вт.
В этих внесистемных единицах мощность первого белорусского трактора МТЗ-2 (1953 г.) была равна 37 л. с. Освоенный в 2010 г. трактор «Беларус-3023» имеет двигатель мощностью 300 л. с. Переведите эти знамения мощности в единицы СИ самостоятельно и сравните их.
Пример решения задачи:
На уроке физкультуры мальчик массой m = 40 кг поднялся по канату на высоту h = 5,0 м за промежуток времени t = 10 с. Определите среднюю мощность, развиваемую мальчиком при подъеме. Коэффициент
Дано:
Решение:
При подъеме по канату работа мускульной силы рук идет на преодоление силы тяжести.
Тогда
Ответ: P = 0, 20 кВт.
Кинетическая энергия
Энергия — одно из наиболее важных и сложных понятий. Причем не только в физике, но и в других науках. А что же такое кинетическая энергия?
Рассмотрим два примера. Шайба, попадая в сетку ворот (рис. 230), прогибает ее. Молот для забивания свай (рис. 231), падая на сваю, загоняет ее в землю на некоторую глубину. Чтобы сильнее прогнуть сетку или глубже забить сваю, шайба и молот должны иметь большую скорость. И шайба, и молот совершили работу. При этом скорость их движения изменилась (уменьшилась до нуля). Совершенные ими работы были разными, даже если предположить, что скорости движения были одинаковыми. Но массы молота и шайбы не равны.
Если тело способно совершить работу, то оно обладает энергией. В физике энергию движущегося тела называют кинетической (от греч. kinetikos — приводящий в движение). Кинетическая энергия обозначается буквой К (или ) и измеряется в СИ в тех же единицах, что и работа, т. е. в джоулях.
Большая кинетическая энергия движущихся тел — камня, автомобиля, железнодорожного состава (рис. 232), метеорита и др. — означает, во-первых, что при разгоне их до данной скорости разгоняющей силой была совершена большая работа и, во-вторых, при их остановке тормозящей силой будет совершена такая же большая работа.
Из примеров следует, что кинетическая энергия зависит от массы тела и скорости его движения. Какой является эта зависимость?
Опыты показывают, что кинетическая энергия прямо пропорциональна массе тела и квадрату скорости его движения:
Увеличение скорости движения тела, например в 4 раза, приводит к возрастанию кинети- Обратите внимание! ческой энергии в 16 раз. Об этом должны всегда помнить водители и пешеходы.
Главные выводы:
- Кинетическая энергия выражает способность движущихся тел совершать работу.
- Кинетическая энергия, как и работа, измеряется в джоулях.
- Кинетическая энергия тела зависит от его массы и скорости.
- Изменить (увеличить или уменьшить) кинетическую энергию тела можно только путем совершения работы (положительной или отрицательной).
Пример решения задачи:
Скорость движения груженого автомобиля массой m = 4,0 т увеличилась от до
на пути s = 25 м. Определите силу тяги двигателя автомобиля и работу, которую совершила эта сила. Сопротивление движению не учитывать.
Дано:
Решение:
Чтобы увеличить кинетическую энергию от до
сила тяги должна была совершить работу:
Но работа Отсюда
Ответ:
Потенциальная энергия
При разгоне любого тела (санок, автомобиля и др.) у него возникает способность совершить механическую работу — у движущегося тела появляется кинетическая энергия. А если тело неподвижно? Обладает ли оно способностью совершить работу?
Проведем два опыта. В первом поднимем и укрепим на нити над ящиком с песком гирю (рис. 235, а). Во втором между упором и шариком поместим предварительно сжатую и связанную ниткой пружину (рис. 235, б). Оба тела (гиря и пружина) неподвижны и не обладают кинетической энергией. Но и у гири, и у пружины есть возможность совершить работу. Для этого достаточно в обоих случаях пережечь нить. В физике говорят, что тела (поднятая гиря, взаимодействующая с Землей, и сжатая пружина) обладают потенциальной энергией (от лат. potentia — скрытая способность). Потенциальную энергию в СИ измеряют в тех же единицах, что и работу, — в джоулях.
Важно понимать, что потенциальная энергия не появляется сама по себе. В этих опытах гиря была поднята над столом, пружина была сжата какой-то силой. Значит, чтобы тело запасло потенциальную энергию, необходимо совершить работу. Чем сильнее будет сжата пружина, чем выше будет поднято тело, тем больше у них будет запас потенциальной энергии. Тела, представленные на рисунке 236, уже обладают потенциальной энергией. У трамплина она вызвана прогибом (деформацией) доски, у мышеловки — закручиванием пружины, у лука — изменением расположения древка и тетивы. Из этих и других примеров следует, что потенциальная энергия — это энергия, обусловленная взаимным расположением взаимодействующих тел или частей тела (гири и Земли, стрелы и тетивы, звеньев пружины). Обозначается потенциальная энергия буквой П (или ).
Именно благодаря потенциальной энергии сжатой (закрученной) пружины работают механические часы, реле времени микроволновых печей, стиральных машин, движутся некоторые детские игрушки. Потенциальная энергия поднятой с помощью плотины воды заставляет работать гидроэлектростанции (рис. 237).
Главные выводы:
- Неподвижные взаимодействующие тела (система тел) могут обладать способностью совершать механическую работу, а значит, потенциальной энергией.
- Значение потенциальной энергии зависит от взаимного расположения взаимодействующих тел (частей тела).
- Потенциальная энергия изменяется только при совершении работы.
Расчет потенциальной энергии
Кинетическая энергия тела, зависящая от его массы и скорости, выражается формулой Данная формула справедлива и для планеты Земля, мчащейся со скоростью
по орбите вокруг Солнца, и для невидимого нашему глазу атома. Существует ли единая формула для расчета потенциальной энергии?
Рассмотрим отдельно два случая: потенциальную энергию притяжения поднятого над поверхностью Земли тела и потенциальную энергию деформированного тела.
В первом случае формулу для расчета потенциальной энергии легко вывести. Если тело массой m поднято относительно поверхности Земли на высоту h (рис. 238), то при его падении сила тяжести может совершить работу:
Это и есть потенциальная энергия поднятого тела:
Значение потенциальной энергии относительно. Так, относительно пола потенциальная энергия светильника (рис. 239) массой m = 1,0 кг, центр тяжести которого расположен на высоте от пола, равна:
Относительно потолка она равна:
Поэтому, приводя значение потенциальной энергии, необходимо указывать уровень, относительно которого она задана, — нулевой уровень потенциальной энергии (это может быть, к примеру, поверхность пола, потолка, стола и т. д.).
Гораздо сложнее дело обстоит с расчетом потенциальной энергии деформированного тела. Мы можем растянуть или сжать пружину, изогнуть или закрутить ее (рис. 240). Потенциальная энергия у пружины будет в каждом из этих случаев. И чем больше упругая деформация, тем больше потенциальная энергия пружины. В данном примере расчет потенциальной энергии придется вести по различным формулам. Более детально с этим вы будете знакомиться в 9-м классе.
Главные выводы:
- Потенциальная энергия притяжения тела к Земле зависит от массы тела и высоты его подъема над нулевым уровнем энергии.
- Значение потенциальной энергии тела зависит от выбора нулевого уровня энергии.
- Потенциальная энергия деформированного тела зависит от величины деформации.
Пример решения задачи:
Парафиновый однородный кубик с длиной ребра а = 10 см лежит на столе на высоте = 0,80 м от пола. Определите потенциальную энергию кубика относительно поверхностей: а) пола; б) стола. Какую работу нужно совершить, чтобы поднять кубик с пола на стол? Коэффициент
Дано:
Решение:
Потенциальная энергия кубика относительно поверхности пола (рис. 241) определяется положением его центра (точки O):
Масса кубика объем
тогда:
Потенциальная энергия кубика относительно поверхности стола:
Работа по подъему кубика на высоту равна изменению его потенциальной энергии. Получаем:
Ответ:
Закон сохранения механической энергии
Кинетическая и потенциальная энергии — это два вида механической энергии. Связаны ли они друг с другом? И если да, то в чем выражается эта связь?
Проследим за движением брошенного вверх металлического шарика (рис. 243). В нижней точке траектории сила действия руки на шарик сообщает ему кинетическую энергию. Шарик движется вверх. Скорость его движения, а значит, и кинетическая энергия уменьшаются. Но исчезает ли кинетическая энергия бесследно? Поднимаясь выше, шарик приобретает все большую потенциальную энергию (вспомните: ). В верхней точке скорость и кинетическая энергия шарика равны нулю, а потенциальная максимальна. Значит, в рассмотренном примере происходит превращение энергии из одного вида (кинетической) в другой (потенциальную). При возвращении шарика обратно снова будет идти превращение энергии: с уменьшением высоты (и потенциальной энергии) увеличивается скорость движения шарика (и кинетическая энергия).
Если сопротивление воздуха мало (и им можно пренебречь), брошенный вверх шарик возвращается назад практически с такой же, как в момент бросания, скоростью и кинетической энергией.
А каким будет значение механической энергии шарика в промежуточных точках? Например, на высоте (рис. 243)? При подъеме шарика на высоту
его кинетическая энергия уменьшилась, но при этом появилась потенциальная энергия. А чему равна их сумма, т. е. полная механическая энергия? Данный и подобные опыты и расчеты показывают, что если сил сопротивления нет, то полная механическая энергия тела (системы тел), равная сумме кинетической и потенциальной энергий
сохраняется. Данное утверждение о постоянстве механической энергии в физике называют законом сохранения механической энергии.
Если силами трения или сопротивления движению нельзя пренебречь, этот закон не выполняется. Заменим в опыте металлический шарик на пенопластовый брусок такой же массы (рис. 244). Мы увидим, что даже при большей, чем у металлического шарика, начальной скорости он не поднимется на такую же высоту и вернется назад с заметно меньшей скоростью. Убывает кинетическая энергия движущейся по горизонтальной поверхности льда шайбы, но потенциальная энергия взамен не появляется. За счет кинетической энергии шайбы совершается работа против сил трения.
В заключение заметим, что явление превращения энергии из одного вида в другой человек научился использовать в практических целях. Энергия падающей воды приводит в действие водяные мельницы и гидроэлектростанции. В Республике Беларусь успешно реализуется государственная программа использования энергии рек. Важная роль в ней отводится таким рекам, как Неман и Западная Двина. Па Немане работает Гродненская ГЭС мощностью 17 МВт. Установленная мощность Витебской ГЭС на Западной Двине — 40 МВт.
Кинетическую энергию ветра человек с давних времен начал использовать с помощью паруса (рис. 245), затем стал применять в ветряных мельницах. В последние годы в нашей стране начато сооружение ветроэлектростанций (рис. 246). Они уникальны тем, что не оказывают вредного воздействия на окружающую среду. Во многих странах успешно используют энергию приливов и отливов вод морей и океанов. Там созданы приливные электростанции.
Главные выводы:
- Кинетическая и потенциальная энергии взаимо-превращаемы.
- При отсутствии сил трения и сопротивления движению полная механическая энергия тела (системы тел) сохраняется.
- Закон сохранения механической энергии не выполняется, если силами трения (сопротивления) нельзя пренебречь.
- Заказать решение задач по физике
Пример решения задачи:
Камень бросили вертикально вверх со скоростью На какой высоте от точки бросания кинетическая энергия камня будет в 4 раза меньше его потенциальной энергии? Сопротивлением движению камня пренебречь. Коэффициент
Дано:
Решение:
За нулевой уровень потенциальной энергии примем уровень O — O, проходящий через точку бросания камня (рис. 247). Значит,
Полная механическая энергия камня в точке бросания 1:
Полная механическая энергия камня в точке 2:
По условию Значит,
Ответ:
Энергия и работа
Энергия – эта количественная мера различных форм движения и взаимодействия (по гречески слово «энергия» означает действие). Энергия в зависимости от вида движения в природе проявляется по-разному. Например, механическая, тепловая, электромагнитная, ядерная энергия и другие. В результате взаимодействия энергия одного вида превращается в энергию другого вида. Однако во всех этих процессах энергия, переданная от одного тела второму (независимо от ее вида), будет равна энергии, полученной вторым телом от первого.
Как известно из второго закона Ньютона, чтобы изменить механическое движение тела на него должны подействовать другие тела. Иначе говоря, среди этих тел происходит обмен энергиями. Для описания такого обмена энергии в механике введено понятие механическая работа, которую принято обозначать буквой .
Механическая работа. Величина, равная скалярному произведению силы на перемещение в направлении действия силы, называется механической работой, т.е.
Здесь: – угол между силой
и перемещением
s (рисунок 3.1).
Если учитывать, что , то уравнение (3.1) примет вид:
Здесь – проекция силы в направлении смещения.
Основываясь на выражении (3.2), можно сделать следующий вывод:
если , то
– работа силы положительна, направление силы и смещение совпадают;
если , то
– работа силы отрицательная, направления силы и смещения противоположны;
если , то
– работа, выполненная силой, равна нулю, направление силы будет перпендикулярным к направлению смещения.
Работа считается аддитивной (аддитив – по-латински означает суммарный) величиной (в физике аддитивность величины означает, что величина, относящаяся к системе в целом, равна сумме величины, относящихся к ее составным частям).
Если на тело действует несколько сил, то будет:
тогда полная работа равна работе, выполненной равнодействующей сил.
или
Единица работы. Единица измерения работы в системе СИ – Джоуль (Дж):
В качестве единицы работы в СИ принята работа выполненная силой 1Н при смещении тела на 1 м.
Работа силы тяжести. На поверхности Земли на тело действует сила тяжести со стороны Земли, равная . При перемещении тела из точки
на высоте
от поверхности Земли в точку
на высоте
от поверхности Земли, смещение тела равно:
(рис. 3.2).
Здесь выполненная силой тяжести работа выражается следующей формулой:
Здесь: – вес тела,
– его масса,
– ускорение свободного падения,
– расстояние между уровнями
и
по вертикали.
Работа, выполненная силой тяжести, не зависит от формы пути, зависит только от высоты спуска. Поэтому работа, выполненная под действием силы тяжести, зависит не от формы траектории, а от начального и конечного состояний. Такая сила называются потенциальной или консервативной. Поле такой силы называется потенциальным полем.
При движении тела вниз из-за соответствия направления силы тяжести и смещения выполненная работа будет положительной, при движении вверх из-за противоположности направлений работа будет отрицательной. Поэтому в случае, когда тело под воздействием силы тяжести смещено и вернулось обратно, выполненная общая работа равняется нулю.
Полной механической энергией системы называется сумма кинетической и потенциальной энергии системы. Например, полная механическая энергия тела массой , двигающегося со скоростью
относительно Земли на высоте
от поверхности Земли:
Полная механическая энергия системы остается неизменной с течением времени:
Возможны лишь превращения потенциальной энергии и кинетическую и обратно. Выражение (3.5) представляет собой закон сохранения механической энергии.
Проведенные многочисленные эксперименты, теоретические выводы подтвердили строгое соблюдение закона сохранения энергии.
В природе постоянно происходят превращения одного вида энергии в другой (например, механическая энергия переходит в тепловую энергию). Поэтому этот закон также называют законом сохранения и превращения энергии. Этот закон является основным законом природы и действителен не только для макроскопических, но и микроскопических систем.
Энергия никогда не исчезает, ниоткуда не появляется, она может только преобразовываться из одного вида в другой.
В закрытых системах полная энергия сохраняется.
Например, потенциальная энергия тела, падающего с высоты , зависит от его веса и абсолютно не зависит от времени проведения экспериментов.
Коэффициент полезного действия. Введена величина, показывающая, какая часть израсходованной энергии машин и двигателей превращается в полезную работу.
Отношение полезной работы к полной работе называется коэффициентом полезного действия (КПД) и обозначается буквой .
Если полезную работу обозначить , полную работу
, тогда формулу КПД можно записать в виде:
КПД не может быть больше единицы (100%). В машинах и двигателях в результате работы силы трения часть полной энергии расходуется и поэтому КПД всегда меньше единицы.
Рассмотрим наклонную плоскость и выполненную работу при подъеме тела вверх. По «золотому правилу» механики, во сколько раз выигрываем в силе, во столько раз проиграем в расстоянии. Но из-за увеличения расстояния смещения не меняется выполненная работа.
Рассмотрим груз с весом на наклонной плоскости длиной
, высотой
(рис. 3.3). Здесь на тело действует сила трения
, параллельная наклонной поверхности тянущая вверх сила
, перпендикулярно направленная к наклонной плоскости
и противоположно направленная перпендикулярно к поверхности сила
(реактивная сила поверхности).
Если не учитывать силу трения, получим уравнение:
Однако с учетом силы трения,
Тогда пишется в следующем виде:
Коэффициент полезного действия:
Сила притяжения, действующая на груз, равна:
- Движение и силы
- Давление в физике
- Строение вещества в физике
- Физическое тело и вещество в физике
- Золотое правило механики
- Потенциальная энергия
- Кинетическая энергия
- Закон сохранения и превращения механической энергии
поделиться знаниями или
запомнить страничку
- Все категории
-
экономические
43,627 -
гуманитарные
33,648 -
юридические
17,917 -
школьный раздел
611,615 -
разное
16,897
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Механическая работа (А)
Физическая величина, характеризующая результат действия силы и численно равная скалярному произведению вектора силы и вектора перемещения, совершенного под действием этой силы.
A=Fscosα
A=Fscosα
Работа не совершается, если:
1.Сила действует, а тело не перемещается.
Например: мы действуем с силой на шкаф, но не можем сдвинуть.
2.Тело перемещается, а сила равна нулю или все силы скомпенсированы.
Например: при движении по инерции работа не совершается.
3. Угол между векторами силы и перемещения (мгновенной скорости) равен 900(cosα=0).
Например: центростремительная сила работу не совершает.
Если вектора силы и перемещения сонаправлены (α=00, cos0=1), то A=Fs
Если вектора силы и перемещения направлены противоположно
(α=1800, cos1800 = -1), то A= -Fs (например, работа силы сопротивления, трения).
Если угол между векторами силы и перемещения 00 < α < 1800, то работа положительна.
Если угол между векторами силы и перемещения 00 < α < 1800, то работа положительна.
Если на тело действует несколько сил, то полная работа (работа всех сил) равна работе результирующей силы.
Если тело движется не по прямой, то можно разбить все движение на бесконечно малые участки, которые можно считать прямолинейными, и просуммировать работы.
Графическое представление работы.
Рассмотрим движение тела под действием постоянной силы вдоль прямой Ох. График зависимости силы от координаты изображен на рисунке.
Площадь заштрихованного прямоугольника на рисунке численно равна работе силы Fпри перемещении из точки х1 в точку х2.
Если сила меняется с расстоянием (координатой), то необходимо разбить все движение на такие малые участки, на которых силу можно считать неизменной, сосчитать работы на каждом элементарном участке пути, и сложить все элементарные работы. Таким образом: работа численно равна площади фигуры под графиком зависимости силы от координаты F(x).
Единицы работы.
В международной системе единиц (СИ):
[А] = Дж = Н • м
Механическая работа равна одному джоулю, если под действием силы в 1 Н оно перемещается на 1 м в направлении действия этой силы.
1Дж = 1Н • 1м
Мощность
Мощность — физическая величина, характеризующая скорость совершения работы и численно равная отношению работы к интервалу времени, за который эта работа совершена.
Мощность показывает, какая работа совершается за единицу времени.
Единицы мощности
В международной системе единиц (СИ):
Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.
1 л.с. (лошадиная сила) ≈ 735 Вт