Как найти механическую работу за промежуток времени

В сегодняшней статье кратко расскажем про работу и мощность в механике, а также приведем примеры задач для тех, кто учится их решать.

Больше полезной информации для студентов всех специальностей — на нашем телеграм-канале. Подписывайтесь!

Задачи на механическую работу и мощность с решениями

Задача №1. Нахождение механической работы

Условие

Грузчик равномерно толкает ящик с осциллографами по горизонтальному полу. Сила трения равна 450 Н. Найдите работу, совершенную грузчиком, если ящик передвинули на 20 метров.

Решение

Так как ящик двигался равномерно, то сила тяги грузчика равна силе трения.

Задача №1. Нахождение механической работы

Ответ: 9кДж

Задача №2. Расчет работы силы тяжести

Условие

Гантель массой 1 кг падает с высоты 10 метров. Какую работу совершает сила тяжести?

Решение

Задача №2. Расчет работы силы тяжести

Ответ: 100 Дж.

mgh — выражение для потенциальной энергии камня в наивысшей точке.

Задача №3. Расчет механической мощности и работы

Условие

Деревенский житель поднимает ведро из колодца за 20 секунд, действуя с постоянной силой 80 Н. Глубина колодца равна h=10 м. Какую мощность развивает человек?

Решение

Сначала найдем работу, совершаемую при подъеме ведра, а затем вычислим мощность:

Задача №3. Расчет механической мощности и работы

Ответ: 40 Вт.

Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Условие

Мотороллер движется со скоростью 60 км/ч. Сила тяги двигателя равна 245 Н. Какую мощность развивает двигатель?

Решение

Переведем значение скорости в систему СИ и применим формулу, связывающую мощность, силу и скорость:Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Ответ: 4092 Вт.

Задача №5. Нахождение механической работы.

Условие

Мощность двигателя трамвая равна 86 кВт. Какую работу может совершить трамвай за 2 часа непрерывной езды?

Решение

Работу можно вычислить из определения мощности:

Задача №5. Нахождение механической работы.

Ответ: 619200 кДж

Вопросы на механическую мощность и работу

Вопрос 1. Сила тяжести действует на автомобиль, едущий по прямой и горизонтальной дороге. Совершает ли эта сила работу?

Ответ. Не совершает. Работу в данном случае совершает сила тяги двигателя автомобиля.

Вопрос 2. Приведите примеры механической работы.

Ответ. Примеры в которых совершается механическая работа:

  • лошадь тянет телегу (работу совершает сила тяги лошади);
  • бурлаки на Волге тянут баржу (работу совершает мускульная сила рук бурлаков);
  • спортсмен поднимает штангу (работу совершает мускульная сила рук спортсмена).

Вопрос 3. Камень падает с неба. Совершает ли сила тяжести работу?

Ответ. Да, совершает. Это работа так называемых потенциальных, или диссипативных, сил.

Вопрос 4. Какие есть внесистемные единицы измерения мощности?

Ответ. Самая распространенная внесистемная единица измерения мощности — лошадиная сила.

1 лошадиная сила равна примерно 745 Ваттам.

Вопрос 5. Какая еще величина выражается в Джоулях?

Ответ. Джоуль — единица измерения не только работы, но и энергии.

Работа и мощность в механике

Работа в механике

Для работы существует множество определений. Нас в данном случае интересует лишь одно:

Механическая работа — скалярная физическая величина, равная произведению силы, действующей на тело, на модуль перемещения, которое совершает тело под действием этой силы.

Работа в механике

Если направления векторов силы и перемещения не совпадают, в определение добавляется третий множитель: косинус угла альфа между векторами.

Единица измерения работы: Джоуль

Мощность в механике

Мощность показывает, какая работа совершается за единицу времени.

Механическая мощность — скалярная физическая величина, равная отношению работы ко времени, за которое она совершалась.

Мощность в механике

Мощность измеряется в Ваттах.

Нужна помощь в решении задач и других заданий? Обращайтесь в профессиональный студенческий сервис.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Совершённая работа равна изменению энергии, потраченной на совершение работы.

Величину работы можно определить, вычитая из конечного значения энергии начальное значение энергии.

A=Eконеч.−Eнач.,или A=ΔE

, где A — работа (Дж); E — энергия (Дж).

Работу, как и энергию, измеряют в джоулях (Дж).

Если энергия тела увеличивается, тогда общая совершённая работа является положительной.

Пример:

Когда автомобиль начинает двигаться, его кинетическая энергия увеличивается. Значит, двигатель автомобиля совершает положительную работу.

Если энергия тела уменьшается, тогда общая совершённая работа является отрицательной.

Пример:

Когда автомобиль свободно катится по горизонтальной поверхности, его скорость и кинетическая энергия уменьшаются. Значит, сила сопротивления совершает отрицательную работу.

В физике рассматривают физическую работу, которая связана с перемещением тел.

Если при прямолинейном движении на тело действует неизменная сила, направленная в сторону движения тела, тогда работа, произведённая приложенной силой, равна произведению величины силы на величину проделанного перемещения.

Если к телу приложена сила под вертикальным углом к направлению движения тела, как это показано на рисунке, тогда величина совершённой работы зависит от:

1) величины приложенной силы (F), которая совершает работу;

2) расстояния (l), на которое перемещается тело;

3) угла (α) между направлением действия силы и направлением движения тела.

Работа определяется по формуле: A=F⋅l⋅cosα.

Asset 48.svg

Рис. (1). Под углом

Обрати внимание!

Если сила направлена параллельно направлению перемещения, тогда угол (α = 0), а (косинус) угла (α) равен (1). В этом случае формула упрощается: 

A=F⋅l

.

Если проделанный путь является прямолинейным, тогда вместо пути (l) можно использовать перемещение (s). 

В этом случае формула для расчёта работы приобретает такой вид: 

A=F⋅s

.

На трёх рисунках изображены случаи, когда направление силы и направление движения тела совпадают.

1) Действие силы и направление движения тела направлены горизонтально. Например, автомобиль едет по прямому пути, и сила тяги автомобиля приложена в том же направлении.

Asset 49.svg

Рис. (2). Параллельно

2) Действие силы и направление движения тела направлены под одинаковым углом наклона по отношению к горизонту. Например, автомобиль едет в гору.

51Ресурс 1.svg

Рис.(3). Движение «в гору»

3) Действие силы и направление движения тела направлены вертикально. Например, груз поднимается вверх, и сила упругости троса тоже направлена вверх. В этом случае величину совершённой работы можно рассчитать также по формуле 

A=m⋅g⋅h

, где

(m) — масса тела, (g) — ускорение свободного падения,

(h) — высота подъёма тела над поверхностью земли.

PIC-106.svg

Рис. (4). Движение вверх

Обрати внимание!

Если направление действия силы противоположно направлению движения, тогда совершаемая этой силой работа отрицательна.

Работа отрицательна, так как функция (косинус) в интервале значений угла (90° — 180°) является отрицательной.

Таким образом, любая работа, совершённая силой трения или сопротивления, является отрицательной.

Пример:

Когда автомобиль едет с равномерной скоростью по прямой дороге, как это показано на рисунке, работа силы тяги автомобиля является положительной, а работа силы сопротивления равна по величине, но является отрицательной. В результате этого кинетическая и потенциальная энергия автомобиля остаются неизменными. 

Если сила направлена прямо противоположно направлению движения, тогда работу вычисляют по формуле:

A=−F⋅l

.

PIC-85.svg 

Рис. (5). Автомобиль

Источники:

Рис. 1. Под углом. © ЯКласс.

Рис. 2. Параллельно. © ЯКласс.

Рис. 3. Движение «в гору». © ЯКласс.

Рис. 4. Движение вверх. © ЯКласс.

Рис. 5. Автомобиль. © ЯКласс.

Прежде чем раскрывать тему «В чём измеряется работа», необходимо сделать небольшое отступление. Всё в этом мире подчиняется законам физики. Каждый процесс или явление можно объяснить на основе тех или иных законов физики. Для каждой измеряемой величины существует единица, в которой её принято измерять. Единицы измерения являются неизменными и имеют единое значение во всём мире.

Причиной этого является следующее. В тысяча девятьсот шестидесятом году на одиннадцатой генеральной конференции по мерам и весам была принята система измерений, которая признана во всём мире. Эта система получила наименование Le Système International d’Unités, SI (СИ система интернационал). Эта система стала базовой для определений принятых во всём мире единиц измерения и их соотношения.

Физические термины и терминология

В физике единица измерения работы силы называется Дж (Джоуль), в честь английского учёного физика Джеймса Джоуля, сделавшего большой вклад в развитие раздела термодинамики в физике. Один Джоуль равен работе, совершаемой силой в один Н (Ньютон), при перемещении её приложения на один М (метр) в направлении действия силы. Один Н (Ньютон) равен силе, массой в один кг (килограмм), при ускорении в один м/с2 (метр в секунду) в направлении силы.

К сведению.
В физике всё взаимосвязано, выполнение любой работы связано с выполнением дополнительных действий. В качестве примера можно взять бытовой вентилятор. При включении вентилятора в сеть лопасти вентилятора начинают вращаться. Вращающиеся лопасти воздействуют на поток воздуха, придавая ему направленное движение. Это является результатом работы. Но для выполнения работы необходимо воздействие других сторонних сил, без которых выполнение действия невозможно. К ним относятся сила электрического тока, мощность, напряжение и многие другие взаимосвязанные значения.

Электрический ток, по своей сути, – это упорядоченное движение электронов в проводнике в единицу времени. В основе электрического тока лежит положительно или отрицательно заряжённые частицы. Они носят название электрических зарядов. Обозначается буквами C, q, Кл (Кулон), названо в честь французского учёного и изобретателя Шарля Кулона. В системе СИ является единицей измерения количества заряженных электронов. 1 Кл равен объёму заряженных частиц, протекающих через поперечное сечение проводника в единицу времени. Под единицей времени подразумевается одна секунда. Формула электрического заряда представлена ниже на рисунке.

Сила электрического тока обозначается буквой А (ампер). Ампер – это единица в физике, характеризующая измерение работы силы, которая затрачивается для перемещения зарядов по проводнику. По своей сути, электрический ток – это упорядоченное движение электронов в проводнике под воздействием электромагнитного поля. Под проводником подразумевается материал или расплав солей (электролит), имеющий небольшую сопротивляемость прохождению электронов. На силу электрического тока влияют две физические величины: напряжение и сопротивление. Они будут рассмотрены ниже. Сила тока всегда прямо пропорциональна по напряжению и обратно пропорциональна по сопротивлению.

Как было сказано выше, электрический ток – это упорядоченное движение электронов в проводнике. Но есть один нюанс: для их движения нужно определённое воздействие. Это воздействие создаётся путём создания разности потенциалов. Электрический заряд может быть положительным или отрицательным. Положительные заряды всегда стремятся к отрицательным зарядам. Это необходимо для равновесия системы. Разница между количеством положительно и отрицательно заряжённых частиц называется электрическим напряжением.

Мощность – это количество энергии, затрачиваемое на выполнение работы в один Дж (Джоуль) за промежуток времени в одну секунду. Единицей измерения в физике обозначается как Вт (Ватт), в системе СИ W (Watt). Так как рассматривается мощность электрическая, то здесь она является значением затраченной электрической энергии на выполнение определённого действия в промежуток времени.

Лошадь тянет телегу с некоторой силой, обозначим её F
тяги. Дедушка, сидящий на телеге, давит на неё с некоторой силой. Обозначим её F
давл. Телега движется вдоль направления силы тяги лошади (вправо), а в направлении силы давления дедушки (вниз) телега не перемещается. Поэтому в физике говорят, что F
тяги совершает работу над телегой, а F
давл не совершает работу над телегой.

Итак, работа силы над телом или механическая работа
– физическая величина, модуль которой равен произведению силы на путь, пройденный телом вдоль направления действия этой сил
ы:

В честь английского учёного Д.Джоуля единица механической работы получила название 1 джоуль
(согласно формуле, 1 Дж = 1 Н·м).

Если на рассматриваемое тело действует некоторая сила, значит, на него действует некоторое тело. Поэтому работа силы над телом и работа тела над телом – полные синонимы.
Однако, работа первого тела над вторым и работа второго тела над первым – частичные синонимы, поскольку модули этих работ всегда равны, а их знаки всегда противоположны. Именно поэтому в формуле присутствует знак «±». Обсудим знаки работы более подробно.

Числовые значения силы и пути – всегда неотрицательные величины. В отличие от них механическая работа может иметь как положительный, так и отрицательный знаки. Если направление силы совпадает с направлением движения тела, то работу силы считают положительной.
Если направление силы противоположно направлению движения тела, работу силы считают отрицательной
(берём «–» из «±» формулы). Если направление движения тела перпендикулярно направлению действия силы, то такая сила работу не совершает, то есть A = 0.

Рассмотрите три иллюстрации по трём аспектам механической работы.

Совершение силой работы может выглядеть по-разному с точек зрения различных наблюдателей.
Рассмотрим пример: девочка едет в лифте вверх. Совершает ли она механическую работу? Девочка может совершать работу только над теми телами, на которые действует силой. Такое тело лишь одно – кабина лифта, так как девочка давит на её пол своим весом. Теперь надо выяснить, проходит ли кабина некоторый путь. Рассмотрим два варианта: с неподвижным и движущимся наблюдателем.

Пусть сначала мальчик-наблюдатель сидит на земле. По отношению к нему кабина лифта движется вверх и проходит некоторый путь. Вес девочки направлен в противоположную сторону – вниз, следовательно, девочка совершает над кабиной отрицательную механическую работу: A
дев < 0. Вообразим, что мальчик-наблюдатель пересел внутрь кабины движущегося лифта. Как и ранее, вес девочки действует на пол кабины. Но теперь по отношению к такому наблюдателю кабина лифта не движется. Поэтому с точки зрения наблюдателя в кабине лифта девочка не совершает механическую работу: A
дев = 0.

Практически
все, не задумываясь, ответят: во втором.
И будут неправы. Дело обстоит как раз
наоборот. В физике механическая работа
описывается следующими
определениями:
механическая
работа совершается тогда, когда на тело
действует сила, и оно движется. Механическая
работа прямо пропорциональна приложенной
силе и пройденному пути.

Формула механической работы

Определяется
механическая работа формулой:

где
A – работа,
F – сила,
s – пройденный
путь.

ПОТЕНЦИА́Л
(потенциальная функция), понятие, характеризующее широкий класс физических силовыхполей (электрических, гравитационных и т. п.) и вообще поля физических величин, представляемыхвекторами (поле скоростей жидкости и т. п.). В общем случае потенциал векторного поля a(x
,y
,z
)
— такаяскалярная функция u
(x
,y
,z
), что a=grad

35.
Проводники в электрическом поле.
Электроемкость.
Проводники
в электрическом поле.
Проводники
— это вещества, характеризующиеся
наличием в них боль­шого количества
свободных носителей зарядов, способ­ных
перемещаться под действием электрического
поля. К проводникам относятся металлы,
электролиты, уголь. В металлах носителями
свободных зарядов являются электроны
внешних оболочек атомов, которые при
взаи­модействии атомов полностью
утрачивают связи со «своими» атомами
и становятся собственностью всего
проводника в целом. Свободные электроны
участвуют в тепловом движении подобно
молекулам газа и могут перемещаться по
металлу в любом направлении.
Электри́ческая
ёмкость

характеристика проводника,
мера его способности накапливать электрический
заряд.
В теории электрических цепей ёмкостью
называют взаимную ёмкость между двумя
проводниками; параметр ёмкостного
элемента электрической схемы,
представленного в виде двухполюсника.
Такая ёмкость определяется как отношение
величины электрического заряда к разности
потенциалов между
этими проводниками

36. Емкость плоского конденсатора.

Емкость
плоского конденсатора.

Т.о.
емкость плоского конденсатора зависит
только от его размеров, формы и
диэлектрической проницаемости. Для
создания конденсатора большой емкости
необходимо увеличить площадь пластин
и уменьшить толщину слоя диэлектрика.

37.
Магнитное
взаимодействие токов в вакууме. Закон
Ампера.
Закон
Ампера.


В 1820 году Ампер (французский ученый
(1775-1836)) установил экспериментально
закон, по которому можно рассчитать
силу,
действующую на элемент проводника длины
с током
.

где

вектор магнитной индукции,– вектор элемента длины проводника,
проведенного в направлении тока.

Модуль
силы
,
где–
угол между направлением тока в проводнике
и направлением индукции магнитного
поля.Для
прямолинейного проводника длиной
с токомв однородном поле

Направление
действующей силы может быть определено
с помощью правила
левой руки
:

Если
ладонь левой руки расположить так, чтобы
нормальная (к току) составляющая
магнитного поля
входила в ладонь, а четыре вытянутых
пальца направлены вдоль тока, то большой
палец укажет направление, в котором
действует сила Ампера.

38.Напряженность
магнитного поля. Закон
Био-Савара-Лапласа
Напряжённость
магни́тного по́ля
(стандартное
обозначение Н

) — векторная
физическая
величина
,
равная разности вектора магнитной
индукции
B

и вектора
намагниченности
J

.

В Международной
системе единиц (СИ)
: где-магнитная
постоянная
.

Закон
БСЛ.
Закон,
определяющий магнитное поле отдельного
элемента тока

39.
Приложения
закона Био-Савара-Лапласа.
Для
поля прямого тока

Для
кругового витка.

И
для соленоида

40.
Индукция магнитного поля
Магнитное
поле характеризуется векторной величиной,
которая носит название индукции
магнитного поля (векторная
величина, являющаяся силовой
характеристикой магнитного
поля в данной точке пространства).
МИ. (В) это
не сила, действующая на проводники, это
величина, которая находится через данную
силу по следующей формуле: B=F / (I*l)
(Словестно: Модуль
вектора МИ. (B) равен отношению модуля
силы F, с которой магнитное поле действует
на расположенный перпендикулярно
магнитным линиям проводник с током, к
силе тока в проводнике I и длине проводника
l .
Магнитная
индукция зависит только от магнитного
поля. В связи с этим индукцию можно
считать количественной характеристикой
магнитного поля. Она определяет, с
какой силой(Сила Лоренца) магнитное поле действует
назаряд,
движущийся со скоростью.

Измеряется
МИ в теслах (1 Тл). При этом 1 Тл=1 Н/(А*м)
.
МИ
имеет направление. Графически ее можно
зарисовывать в виде линий. В
однородном магнитном
полелинии МИ параллельны, и вектор
МИ будет направлен так же во всех точках.
В случае неоднородного магнитного поля,
например, поля вокруг проводника с
током, вектор магнитной индукции будет
меняться в каждой точке пространства
вокруг проводника, а касательные к этому
вектору создадут концентрические
окружности вокруг проводника.

41.
Движение
частицы в магнитном поле. Сила Лоренца.
а)
— Если частица влетает в область
однородного магнитного поля, причем
вектор V
перпендикулярен вектору B,
то она движется по окружности радиуса
R=mV/qB,
поскольку сила Лоренца Fл=mV^2/R
играет роль центростремительной силы.
Период обращения равен T=2пиR/V=2пиm/qB
и он не зависит от скорости частицы (Это
справедливо только при V<<скорости
света)
— Если угол между векторами V
и B
не равен 0 и 90 градусов, то частица в
однородном магнитном поле движется по
винтовой линии.
— Если вектор V
параллелен B,
то частица движется по прямой линии
(Fл=0).
б)
Силу, действующую со стороны магнитного
поля на движущиеся в нем заряды, называют
силой Лоренца.

Сила
Л. определяется соотношением:
Fл = q·V·B·sina (q — величина движущегося
заряда; V — модуль его скорости; B —
модуль вектора индукции магнитного
поля; aльфа — угол между вектором V
и вектором В)
Сила
Лоренца перпендикулярна скорости и
поэтому она не совершает работы, не
изменяет модуль скорости заряда и его
кинетической энергии. Но направление
скорости изменяется непрерывно.
Сила
Лоренца перпендикулярна векторам В и v ,
и её направление определяется с помощью
того же правила левой руки, что и
направление силы Ампера: если левую
руку расположить так, чтобы составляющая
магнитной индукции В, перпендикулярная
скорости заряда, входила в ладонь, а
четыре пальца были направлены по движению
положительного заряда (против движения
отрицательного), то отогнутый на 90
градусов большой палец покажет направление
действующей на заряд силы Лоренца F л.

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Определение 1

Работа А, совершаемая постоянной силой F → , — это физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α
, располагаемого между векторами силы F → и перемещением s → .

Данное определение рассматривается на рисунке 1 . 18 . 1 .

Формула работы записывается как,

A = F s cos α .

Работа – это скалярная величина. Это дает возможность быть положительной при (0 ° ≤ α < 90 °) , отрицательной при (90 ° < α ≤ 180 °) . Когда задается прямой угол α , тогда совершаемая сила равняется нулю. Единицы измерения работы по системе СИ — джоули (Д ж) .

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Рисунок 1 . 18 . 1 . Работа силы F → : A = F s cos α = F s s

При проекции F s → силы F → на направление перемещения s → сила не остается постоянной, а вычисление работы для малых перемещений Δ s i
суммируется и производится по формуле:

A = ∑ ∆ A i = ∑ F s i ∆ s i .

Данная сумма работы вычисляется из предела (Δ s i → 0) , после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком F s (x) рисунка 1 . 18 . 2 .

Рисунок 1 . 18 . 2 . Графическое определение работы Δ A i = F s i Δ s i .

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F → , модуль которой пропорционален удлинению пружины. Это видно на рисунке 1 . 18 . 3 .

Рисунок 1 . 18 . 3 . Растянутая пружина. Направление внешней силы F → совпадает с направлением перемещения s → . F s = k x , где k обозначает жесткость пружины.

F → у п р = — F →

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Рисунок 1 . 18 . 4 . Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F → у п р равняется работе внешней силы F → , но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то формула общей работы будет выглядеть, как сумма всех работ, совершаемых над ним. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Рисунок 1 . 18 . 5 . Модель механической работы.

Определение мощности

Определение 3

Мощностью
называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N , принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

Определение 4

Система С И использует в качестве единицы мощности ватт (В т) , равняющийся мощности силы, которая совершает работу в 1 Д ж за время 1 с.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Механическая работа

О чем эта статья:

Для нас привычно понятие «работа» в бытовом смысле. Работая, мы совершаем какое-либо действие, чаще всего полезное. В физике (если точнее, то в механике) термин «работа» показывает, какую силу в результате действия приложили, и на какое расстояние тело в результате действия этой силы переместилось.

Например, нам нужно поднять велосипед по лестнице в квартиру. Тогда работа будет определяться тем, сколько весит велосипед и на каком этаже (на какой высоте) находится квартира.

Механическая работа — это физическая величина, прямо пропорциональная приложенной к телу силе и пройденному телом пути.

Чтобы рассчитать работу, нам необходимо умножить численное значение приложенной к телу силы F на путь, пройденный телом в направлении действия силы S. Работа обозначается латинской буквой А.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

Если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа в 1 джоуль.

Поскольку сила и путь — векторные величины, в случае наличия между ними угла формула принимает вид.

Механическая работа

А = FScosα

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

α — угол между векторами силы и перемещения [°]

Числовое значение работы может становиться отрицательным, если вектор силы противоположен вектору скорости. Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае сила называется противодействующей.

Для совершения работы необходимы два условия:

  • чтобы на тело действовала сила,
  • чтобы происходило перемещение тела.

Сила, действующая на тело, может и не совершать работу. Например, если кто-то безуспешно пытается сдвинуть с места тяжелый шкаф. Сила, с которой человек действует на шкаф, не совершает работу, поскольку перемещение шкафа равно нулю.

Полезная и затраченная работа

Был такой мифологический персонаж у древних греков — Сизиф. За то, что он обманул богов, те приговорили его после смерти вечно таскать огромный булыжник вверх по горе, откуда этот булыжник скатывался — и так без конца. В общем, Сизиф делал совершенно бесполезное дело с нулевым КПД. Поэтому бесполезную работу и называют «сизифов труд».

Чтобы разобраться в понятиях полезной и затраченной работы, давайте пофантазируем и представим, что Сизифа помиловали и камень больше не скатывается с горы, а КПД перестал быть нулевым.

Полезная работа в этом случае равна потенциальной энергии, приобретенной булыжником. Потенциальная энергия, в свою очередь, прямо пропорциональна высоте: чем выше расположено тело, тем больше его потенциальная энергия. Выходит, чем выше Сизиф прикатил камень, тем больше полезная работа.

Потенциальная энергия

Еп = mgh

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

h — высота [м]

На планете Земля g ≈ 9,8 м/с 2

Затраченная работа в нашем примере — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

S — путь [м]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:

За счет чего происходит процесс?

Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы).

Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

Мощность

На заводах по всему миру большинство задач выполняют машины. Например, если нам нужно закрыть крышечками тысячу банок колы, аппарат сделает это в считанные минуты. У человека эта задача заняла бы намного больше времени. Получается, что машина и человек выполняют одинаковую работу за разные промежутки времени. Для того, чтобы описать скорость выполнения работы, нам потребуется понятие мощности.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность

N = A/t

N — мощность [Вт]

A — механическая работа [Дж]

t — время [с]

Один ватт — это мощность, при которой работа в один джоуль совершается за одну секунду.

Также для мощности справедлива другая формула:

Мощность

N = Fv

N — мощность [Вт]

F — приложенная сила [Н]

v — скорость [м/с]

Как и для работы, для мощности справедливо правило знаков: если векторы направлены противоположно, значение мощности будет отрицательным.

Поскольку сила и скорость — векторные величины, в случае наличия между ними угла формула принимает следующий вид:

Мощность

N = Fvcosα

N — мощность [Вт]

F — приложенная сила [Н]

v — скорость [м/с]

α — угол между векторами силы и скорости [°]

Примеры решения задач

Задача 1

Ложка медленно тонет в большой банке меда. На нее действуют сила тяжести, сила вязкого трения и выталкивающая сила. Какая из этих сил при движении тела совершает положительную работу? Выберите правильный ответ:

Сила вязкого трения.

Ни одна из перечисленных сил.

Решение

Поскольку ложка падает вниз, перемещение направлено вниз. В ту же сторону, что и перемещение, направлена только сила тяжести. Это значит, что она совершает положительную работу.

Ответ: 3.

Задача 2

Ящик тянут по земле за веревку по горизонтальной окружности длиной L = 40 м с постоянной по модулю скоростью. Модуль силы трения, действующей на ящик со стороны земли, равен 80 H. Чему равна работа силы тяги за один оборот?

Решение

Поскольку ящик тянут с постоянной по модулю скоростью, его кинетическая энергия не меняется. Вся энергия, которая расходуется на работу силы трения, должна поступать в систему за счет работы силы тяги. Отсюда находим работу силы тяги за один оборот:

Ответ: 3200 Дж.

Задача 3

Тело массой 2 кг под действием силы F перемещается вверх по наклонной плоскости на расстояние l = 5 м. Расстояние тела от поверхности Земли при этом увеличивается на 3 метра. Вектор силы F направлен параллельно наклонной плоскости, модуль силы F равен 30 Н. Какую работу при этом перемещении в системе отсчета, связанной с наклонной плоскостью, совершила сила F?

Решение

В данном случае нас просят найти работу силы F, совершенную при перемещении тела по наклонной плоскости. Это значит, что нас интересуют сила F и пройденный путь. Если бы нас спрашивали про работу силы тяжести, мы бы считали через силу тяжести и высоту.

Работа силы определяется как скалярное произведение вектора силы и вектора перемещения тела. Следовательно:

A = Fl = 30 * 5 = 150 Дж

Ответ: 150 Дж.

Задача 4

Тело движется вдоль оси ОХ под действием силы F = 2 Н, направленной вдоль этой оси. На рисунке приведен график зависимости проекции скорости v x тела на эту ось от времени t. Какую мощность развивает эта сила в момент времени t = 3 с?

Решение

На графике видно, что проекция скорости тела в момент времени 3 секунды равна 5 м/с.

Мощность можно найти по формуле N = Fv.

N = FV = 2×5 = 10 Вт

Ответ: 10 Вт.

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

Механическая работа уравнение единицы измерения

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы равна произведению модуля вектора силы на модуль вектора перемещения и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: [А] = Дж = Н • м.
Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости.

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

    Если угол между векторами силы и перемещения 0° ≤ а

Конспект урока «Механическая работа. Механическая мощность».

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа — мера воздействия силы.

Определение механической работы

Работа А , совершаемая постоянной силой F → , — это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F → и перемещением s → .

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

Работа – это скалярная величина. Единица измерения работы по системе СИ — Джоуль ( Д ж ) .

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Рисунок 1. Работа силы F → : A = F s cos α = F s s

При проекции F s → силы F → на направление перемещения s → сила не остается постоянной, а вычисление работы для малых перемещений Δ s i суммируется и производится по формуле:

A = ∑ ∆ A i = ∑ F s i ∆ s i .

Данная сумма работы вычисляется из предела ( Δ s i → 0 ) , после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком F s ( x ) рисунка 2.

Рисунок 2. Графическое определение работы Δ A i = F s i Δ s i .

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F → , модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Рисунок 3. Растянутая пружина. Направление внешней силы F → совпадает с направлением перемещения s → . F s = k x , где k обозначает жесткость пружины.

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F → у п р равняется работе внешней силы F → , но с противоположным знаком.

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N , принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

Система С И использует в качестве единицы мощности ватт ( В т ) . 1 Ватт — это мощность, которую совершает работу в 1 Д ж за время 1 с .

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.

источники:

http://uchitel.pro/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0/

http://zaochnik.com/spravochnik/fizika/zakony-sohranenija-v-mehanike/mehanicheskaja-rabota-i-moschnost/

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа — мера воздействия силы.

Определение механической работы

Определение 1

Работа А, совершаемая постоянной силой F→, — это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.

Данное определение рассматривается на рисунке 1.

Формула работы записывается как,

A=Fs cos α.

Работа – это скалярная величина. Единица измерения работы по системе СИ — Джоуль (Дж).

Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.

Определение механической работы

Рисунок 1. Работа силы F→: A=Fs cos α=Fss

При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsi суммируется и производится по формуле:

A=∑∆Ai=∑Fsi∆si.

Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.

Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.

Определение механической работы

Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.

Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.

Определение механической работы

Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.

F→упр=-F→

Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.

Определение механической работы

Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.

Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид

A=kx22.

Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.

Определение 2

Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.

Мощность

Определение 3

Мощностью называют работу силы, совершаемую в единицу времени.

Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:

N=At.

Определение 4

Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт — это мощность, которую совершает работу в 1 Дж за время 1 с.

Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.  

Если вам нужно найти механическую энергию то воспользуйтесь формулой:N=A/t,то есть вам надо найти работу которая была воспроизведена за определенный промежуток времени t.Через эту формулу можно найти A=N*t.Но можно найти работу по формуле:A=F*S*cos α,то есть работу можно найти если вы будете знать величину силы которая действует определенное расстояние s,которая направлена под определенным углом α.

Отмена




Марк Опрятин


Отвечено 5 июля 2019

  • Комментариев (0)

Добавить

Отмена

Содержание:

  • Определение механической работы
  • Мощность

Характеристики движения, с точки зрения его способности накапливать, принимать и передавать энергию вводятся с помощью термина «механическая работа» или «работа силы». Если перефразировать, то работой можно назвать «меру воздействия силы». 

Определение механической работы 

Определение 1

Работа, выполняемая постоянной по величине силой F — это физический параметр, который можно вычислить как произведение силы на перемещение, умноженное на косинус угла. Угол определяется направлением, вдоль которого действует сила, и направлением перемещения объекта. 

Формула работы записывается в виде: 

A=F·s·cosα. 

Работа является скалярной величиной. Единица в системе СИ, которая используется для измерения работы — Джоуль. Джоуль равен работе, которая выполняется силой в 1 Ньютон, осуществляющей перемещение на расстояние 1 метр, вдоль направления действия силы. 

Если проецировать силу на ось, вдоль которой происходит перемещение, то она не останется постоянной величиной. Вычисление работы этом случае делают для малых перемещений $triangle s_{i}$, которые суммируются и определяются формулой: 

$A=sum triangle A_{i}=sum F_{si} triangle s_{i}$

Теперь вычислим работу при условии $triangle s_{i}rightarrow 0$, получаем, согласно определению интеграла, что наше выражение переходит в интеграл. При изображении работы на графике, в криволинейном варианте, получается суммирование бесконечно малых промежутков, а величина работы соответствует площади под линией на этом графике. Вычисления проводят так же как и для площади криволинейной фигуры.

$triangle A_{i}=F_{si}triangle s_{i}$

В качестве примера можно рассмотреть работу силы упругости пружины, которая вычисляется исходя из закон Гука. Чтобы осуществить растягивание пружины, надо приложить силу, модуль которой будет увеличиваться пропорционально увеличению длины пружины. Направление действия приложенной силы будет совпадать с направлением перемещения.

$F_{s} =kx$, 

где k — это жесткость пружин. 

В соотношении видна взаимосвязь модуля приложенной силы и координаты по оси х. Связь приложенного усилия и координаты на оси координат легко изобразить графически. Силу допустимо рисовать на графике прямой линией. Можно без труда обнаружить величину работы, производимую силой, приложенной к свободному концу пружины. Если брать график, то она вычисляется как площадь треугольника. Формула представлена в виде:

 $A=frac{kx^2}{2}$

Формула в такой интерпретации подходит для вычисления работы той силы, которая прикладывается к пружине и вызывает её сжатие. Случай сжатия и случай растяжения дают представление о том, что сила упругости соответствует работе, но противоположным знаком. 

Определение 2

Если на объект воздействует сразу несколько сил, то при вычислении их общей работы надо суммировать все части работы, которые будут совершаться этим объектом. Когда объект перемещается поступательным образом, то точки приложения усилий движутся равномерно и одинаково. А значит суммарная работа всех усилий будет приравнена общей работе, которая определена для равнодействующей силы. 

Мощность 

Определение 3

Мощность —это работа силы, выполняемая в единицу времени. 

Запись вычисления мощности, как физической величины обозначенной N, будет иметь вид отношения, в котором есть работа А и промежуток времени t. Получаем уравнение

 $N=frac{А}{t}$. 

Определение 4

В системе СИ за единицу мощности берётся ватт (Вт). Один Ватт — это такая мощность, которую совершит работа в 1 Дж за промежуток времени равный 1 с. 

Кроме системной единицы Ватт, используются и внесистемные единицы для измерения мощности. Например, для автомобилей часто применяется «лошадиная сила», которую можно приравнять к 745 Ваттам.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Как найти реквизиты ак барс банка в личном кабинете
  • Как отправить лобовое стекло транспортной компанией
  • Как найти реквизиты для оплаты страховых взносов ип
  • Как отправить реквизиты карты в пфр через госуслуги
  • Как найти реквизиты карты тинькофф через приложение