Электродвигатель отключается во время работы через некоторое время

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Другие полезные материалы:
Выбор электродвигателя для компрессора
Как определить параметры двигателя без шильдика?
Выбор мотор-редуктора для буровой установки

Неисправности электродвигателя

Чтобы быстро определить неисправности электродвигателя, почему электродвигатель вышел из строя и в каких узлах произошел сбой, предлагаем Вам ознакомиться со списком наиболее популярных неисправностей. Ниже приведены характерные неисправности электродвигателя, причины возникновения и способы их правильного устранения.

Электродвигатель сильно гудит при запуске, не набирает оборотов, или не запускается совсем.

Причина: Обрыв цепи статора, обрыв цепи одной из фаз (наконечник, кабель, контактор), перегорела защитная вставка.
Решение: Восстановить цепь питания, проверить и сменить предохранитель.

Причина: Обрыв обмотки статора.
Решение: Перемотать статор.

Причина: Обрыв в цепи фазного ротора (кабель, реостат, щетки).
Решение: Восстановить цепь ротора.

Причина: Нарушение контакта между стержнями и кольцами в короткозамкнутом роторе (дым и искры).
Решение: Ремонт ротора.

Причина: Заклинивание вала ЭД или привода.
Решение: Произвести очистку двигателя или его механизма от возможных загрязнений.

Причина: Низкий пусковой момент, который не позволяет ротору набрать обороты.
Решение: Замена на аналогичный двигатель с большим пусковым моментом.

Причина: Соединение звездой вместо треугольника
Решение: Проверить правильность схемы соединения, произвести переподключение.

Сильный нагрев в подшипниках скольжения.

Причина: Отсутствие или недостаточное количество смазки.
Решение: Произвести смазку подшипников должным образом.

Причина: В масле имеются примеси и механические частицы.
Решение: Произвести замену смазки.

Причина: Износ деталей полумуфт, дефект кольца, бой шейки вала и т.п.
Решение: Ремонт механической части двигателя.

Сильный нагрев в подшипниках качения.

Причина: Отсутствие или недостаточное поступление смазки, избыток смазки.
Решение: Произвести смазку подшипников должным образом, проследить за возможными утечками, убрать излишки смазки.

Причина: Дефекты подшипника, выраженные посторонним шумом.
Решение: Замена подшипника.

Корпус электродвигателя сильно нагревается при работе.

Причина: Слабая работа принудительной системы охлаждения.
Решение: Очистка каналов и технологических отверстий.

Причина: Забиты вентиляционные каналы для пропускания холодного воздуха.
Решение: Продувка сжатым воздухом.

Причина: Повышенная нагрузка по току.
Решение: Понизить нагрузку или заменить на ЭД большей мощности.

Искрение при работе ЭД и появление дыма.

Причина: Ротор соприкасается с поверхностью статора.
Решение: Ремонт двигателя.

Причина: Некорректная работа в защитной или пускорегулирующей системе.
Решение: Диагностика защитной или пускорегулирующей системы и устранение дефектов.

Повышенные вибрации при работе ЭД.

Причина: Износ соединительных муфт
Решение: Отсоединить муфты и проверить ЭД без подключения к механизму.

Причина: Нарушена центровка двигателя и механизма.
Решение: Проверить и затянуть крепежные детали, а также крепления к станине.

Причина: Износ подшипников, разбалансировка ротора, взаимное смещение положения ротора и статора.
Решение: Ремонт ЭД.

Колебания потребления тока статора ЭД в процессе его работы.

Причина: Плохое соединение в цепи — для фазного ротора, для короткозамкнутого ротора — плохое соединение между стержнями и кольцами.
Решение: Ремонт ЭД (при больших колебаниях – незамедлительно, при небольших скачках – чем раньше – тем лучше).

Искры из коллекторно-щеточного узла. Сильный нагрев и обгорание соответствующей арматуры.

Причина: Щетки плохо отшлифованы.
Решение: Отшлифовать щетки.

Причина: Недостаточный зазор для свободного движения щеток в щеткодержателях.
Решение: Выставить допустимый зазор в пределах 0.2-0.3 мм.

Причина: Загрязнение контактных колец или щеток.
Решение: Произвести очистку, устранить источник распространения загрязнения.

Причина: На контактных кольцах имеются борозды и неровности.
Решение: Проточить и произвести шлифовку колец.

Причина: Слабый прижим щеток.
Решение: Отрегулировать усилие нажатия.

Причина: Отсутствует равномерное распределение тока между щетками.
Решение: Отрегулировать усилие нажатие щеток и их свободный ход в щеткодержателях, проверить состояние контактной группы Траверс, оценить состояние токопроводов.

Активная сталь статора перегревается равномерно по всей поверхности.

Причина: Повышенное напряжение питания.
Решение: Организовать дополнительное охлаждение электродвигателя и понизить напряжение электросети до штатного уровня.

Сильный нагрев активной стали статора в отдельном месте на холостом ходу при штатном напряжении в сети.

Причина: Местное КЗ между отдельными листами активной стали.
Решение: Очистить и прошлифовать место соприкосновения листов, покрыть их диэлектрическим лаком.

Причина: Нарушена изоляция в местах стяжки активной стали.
Решение: Восстановить изоляцию на данных участках.

ЭД с фазным ротором при загрузке не выходит на номинальные обороты.

Причина: Некачественное соединение в пайке контактного кольца ротора.
Решение: Произвести контроль надежности пайки визуально и «проверкой с падением напряжения».

Причина: Слабый контакт обмотки ротора с контактным кольцом.
Решение: Проверить и восстановить токопроводящие соединения.

Причина: Слабое соединение в щеточном узле и механизме КЗ ротора.
Решение: Произвести шлифовку и регулировку усилия прижатия щеток.

Причина: Слабое соединение контактных проводов в пусковой аппаратуре.
Решение: Восстановить целостность и надежность контактов на соответствующем участке.

Двигатель с фазным ротором запускается при незамкнутой цепи ротора, а под нагрузкой не может выйти на номинальный режим.

Причина: КЗ в обмотке якоря, соединительных хомутах лобовых соединений.
Решение: Изолировать соприкасающиеся хомуты, Устранить КЗ и произвести замену поврежденной обмотки якоря.

Причина: КЗ обмотки ротора по двум участкам одновременно.
Решение: Устранить КЗ и произвести замену обмотки неисправной катушки.

Неисправность: Двигатель с короткозамкнутым ротором не набирает штатное количество оборотов.

Причина: Отработало тепловое реле, вышли из строя предохранители или автомат.
Решение: Проверка и устранение данных неисправностей.

При запуске электродвигателя электрическая дуга перекрывает контактные кольца.

Причина: В щеточном узле или на контактных кольцах присутствует пыль, грязь.
Решение: Провести чистку.

Причина: Высокая влажность в месте эксплуатации ЭД.
Решение: Нанести дополнительный слой диэлектрика или произвести замену ЭД на другой, пригодный для эксплуатации в текущих условиях.

Причина: Обрыв в контактных соединениях реостата или ротора.
Решение: Провести диагностику всех соединений, устранить неисправности.

Дефекты обмотки электродвигателей

Пропадание одной из фаз схема (Звезда)

Неисправности электродвигателя

Пропадание одной из фаз схема (Звезда)

Пропадание одной из фаз схема (Треугольник)

Неисправности электродвигателя причины и способы их устранения 1

Пропадание одной из фаз схема (Треугольник)

Межфазное замыкание

Неисправности электродвигателя причины и способы их устранения 2

Межфазное замыкание

Межвитковое замыкание

Неисправности электродвигателя

Межвитковое замыкание

Замыкание на корпус на выходе из паза

Неисправности электродвигателя

Замыкание на корпус на выходе из паза

Замыкание на корпус паза

Неисправности электродвигателя

Замыкание на корпус паза

Замыкание в схеме

Неисправности электродвигателя

Замыкание в схеме

Повреждение фазы из-за перекоса напряжений

Неисправности электродвигателя

Повреждение фазы из-за перекоса напряжений

Повреждение обмотки при перегрузке

Неисправности электродвигателя причины и способы их устранения 3

Повреждение обмотки при перегрузке

Повреждение обмотки из-за заклинившего ротора

Неисправности электродвигателя причины и способы их устранения 4

Повреждение обмотки из-за заклинившего ротора

Повреждение обмотки из-за скачка напряжения

Неисправности электродвигателя причины и способы их устранения 5

Повреждение обмотки из-за скачка напряжения

Поделиться ссылкой:

Что искать и как повысить время безотказной работы оборудования.

В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера. И только нужные знания разделяют дорогостоящий простой и продление срока службы.

Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.

13 распространенных причин неисправности электродвигателей

Качество электроэнергии

Переходное напряжение

Переходные напряжения могут происходить из множества источников как на самом предприятии, так и за его пределами. Включение и выключение нагрузки поблизости, батареи конденсаторов коррекции коэффициента мощности или даже погодные явления — все это может создавать переходные напряжения в распределительных сетях. Эти процессы с произвольной амплитудой и частотой могут разрушать или повреждать изоляцию обмоток электродвигателей. Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.

Прибор для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: высокая.

Асимметрия напряжений

Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.

Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

Гармонические искажения

Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.

Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.

Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.

Критичность: средняя.

Электродвигатель останавливается после запуска

Здравствуйте. Помогите пожалуйста понять. Мотор 4АА*** ,трехфазный, 370 ватт. Стоит на станке Универсал-2, судя по всему родной. Подключен к 220 вольт тоже судя по всему родным блоком (пусковой конденсатор, рабочий конденсатор (сборка из трех в параллель) и реле). По паспорту схема треугольник. Включается тумблером в штатном месте, реверса нет. Станок был куплен недавно, я на нем не работал, после покупки включил, убедился что работает и занялся механической частью, т.к. состояние было уставшее. На днях решил запустить, и выяснилась такая картина — мотор запускается, работает примерно 10 секунд и останавливается. Сразу после этого его снова можно запустить на 10 секунд. Когда останавливается не гудит, не воняет не греется, просто не крутит. Куда рыть? Сразу скажу в этом вопросе я не силен. Может когда разбирал таскал за провод там отошла одна из обмоток? или это проблемы рабочего конденсатора? Станку больше 40 лет. Крышку на коробке мотора снимал еще раньше, там визуально все норм было.

Попутно несколько вопросов: движок с блоком соединен кабелем в резиновой оболочке, там 3 жилы, везде пайка. Допустимо ли поменять кабель на современный, чтобы иметь возможность отсоединять мотор — хочу взять стандартный сетевой кабель от системника хорошего качества, отрезать половину с вилкой, припаять к мотору и использвовать разъемы папа-мама как на картинке для соединения с блоком конденсатров. Полкабеля с вилкой как раз пойдут от блока к розетке. Такие разъемы стоят в мощных бесперебойниках и вроде как без проблем.

Вопрос 2: куплен частотник на 0.37 киловатт, т.е. получается впритык — искать движок послабее например на 250 ватт, или определить как-то пограничные режимы и не выходить за них при работе? Какой мотор можете посоветовать с учетом того что нужно фланцевое крепление 70 на 70, желательно чтобы вал был 14мм, а в идеале чтобы это был такой же мотор по типоразмеру (вдруг их еще производят?), там еще резьба в торце вала и шпонпаз. Чтобы не колхозить с родными шкивами. Кстати пока я его снял, есть возможность обслужить или поменять подшипники, а еще у него крыльчатка охлаждения треснула по ступице и свободно прокручивается. Бывают такие, может более эффективные по форме? Тоже касается и пластиковой крышки которая закрывает эту крыльчатку, она вся разбита и держится а одном винте. Бывает зип для таких моторов?

Изменено 4 ноября пользователем Crokodil очепятки

Частотно-регулируемые приводы

Отражения на выходных ШИМ-сигналах привода

Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.

Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.

Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter®, 4-канальный портативный осциллограф с высокой частотой выборки.

Критичность: высокая.

Среднеквадратичное отклонение тока

По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.

Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).

Критичность: низкая.

Рабочие перегрузки

Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30 % всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.

Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.

Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.

Критичность: высокая.

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверка электродвигателя на холостом ходу и под нагрузкой

Проверку электродвигателя на холостом ходу производят при отсоединенном механизме. Если отсоединить механизм нельзя, то проводится проверка при ненагруженном механизме. Продолжительность проверки — 1 ч.

При этом проверяют нагрев подшипников, корпуса двигателя, наличие вибрации, характер шума подшипников.

При ненормальном шуме подшипников и их перегреве двигатель приходится разбирать и устранять причину. При невозможности устранить причину ненормальной работы подшипника он заменяется.

При повышенном нагреве корпуса двигателя (большем, чем у других нормально работающих двигателей) он останавливается и производится проверка прилегания контактов в аппаратах, через которые подводится напряжение к двигателю, проверка плотности затягивания зажимов проводов, начиная от выводных концов в коробке двигателя, измерение величины напряжения между фазами.

При нормальном напряжении, при исправности цепи, подводящей напряжение к двигателю, и его повышенном нагреве на холостом ходу он должен отправляться в капитальный ремонт. Перед этим у него должно быть проверено соответствие обозначений выводных концов фазных обмоток, измерено сопротивление обмоток постоянному току, что делается при наладке опытными специалистами.

О других неисправностях и их устранении можно узнать ниже по табл. 2.137, далее рассказано об устранении вибраций.

I После проверки двигателя на холостом ходу начинается его проверка под нагрузкой. При нормальной работе двигателя в течение 20…30 мин с механизмом далее продолжается его обкатка вместе с механизмом не менее 8 ч. При этом прирабатываются подвижные детали механизмов, проверяется на нагрев электрооборудование, выявляются его слабые места. Режим обкатки определяется механиками, производившими монтаж технологического оборудования.

Способы пуска в ход асинхронных двигателей

Схемы пуска двигателей в ход должны предусматривать создание большого пускового момента при небольшом пусковом токе и, следовательно, при небольшом падении напряжения при пуске. При этом может требоваться плавный пуск, повышенный пусковой момент и т. д.

На практике применяются следующие способы пуска: непосредственное присоединение к сети — прямой пуск; понижение напряжения при пуске;

включение сопротивления в цепь ротора в двигателях с фазовым ротором.

Механические причины

Нарушение центрирования

Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением неотцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:

  • Угловое смещение: оси валов пересекаются, но не параллельны.
  • Параллельное смещение: оси валов параллельны, но не соосны.
  • Сложное смещение: сочетание углового и параллельного смещений. (Примечание: практически всегда нарушение центрирования является сложным, но практикующие специалисты рассматривают их как сумму составляющих смещений, поскольку устранять нарушение центрирования проще по отдельности — угловую и параллельную составляющие).

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830

Критичность: высокая

Дисбаланс вала

Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации. Дисбаланс может быть вызван различными причинами:

  • скопление грязи;
  • отсутствие балансировочных грузов;
  • отклонения при производстве;
  • неравная масса обмоток двигателя и другие факторы, связанные с износом.

Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.

Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.

Прибор для измерения и диагностики: измеритель вибрации Fluke 810.

Критичность: высокая.

Расшатанность вала

Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:

  • Расшатанность с вращением возникает из-за чрезмерного зазора между вращающимися и неподвижными частями машины, например, в подшипнике.
  • Расшатанность без вращения возникает между двумя обычно неподвижными деталями, например, между опорой и основанием или корпусом подшипника и машиной.

Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.

Bлияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности

Прибор для измерения и диагностики: измеритель вибрации Fluke 810

Критичность: высокая

Износ подшипника

Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:

  • нагрузка, превышающая расчетную;
  • недостаточная или неправильная смазка;
  • неэффективная герметизация подшипника;
  • нарушение центрирования вала;
  • неправильная установка;
  • нормальный износ;
  • наведенное напряжение на валу.

Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13 % неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.

Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя

Прибор для измерения и диагностики: измеритель вибрации Fluke 810

Критичность: высокая

Причины выхода из строя электродвигателей

  1. Качество электроэнергии

1.1. Переходное напряжение 1.2. Дисбаланс напряжения 1.3. Гармонические искажения

  1. Частотно-регулируемые приводы

2.1. Отражения ШИМ-сигналов на выходе привода 2.2. Сигма-ток 2.3. Перегрузки при эксплуатации

  1. Механические

3.1. Несоосность электродвигателя 3.2. Дисбаланс вала 3.3. Люфт вала 3.4. Износ подшипника

Качество электроэнергии

1.1 Переходные процессы

Переходные напряжения и токи могут возникать из различных источников, располагающихся как внутри, так и за пределами установки. Включение и выключение смежных нагрузок, работа блоков конденсаторов коррекции коэффициента мощности и даже погодные условия могут создавать переходные процессы в распределительных сетях. Подобные отличающиеся по амплитуде и частоте явления могут приводить к разрушению или пробою изоляции обмоток электродвигателя.

Обнаружение источника подобных помех может быть затруднено из-за их редкого появления и разнообразного проявления. Например, переходные процессы могут возникать в цепях управления. Это не обязательно может привести к повреждению оборудования напрямую, но может нарушать его работу.

Переходные процессы могут возникать из различных источников, располагающихся как внутри, так и за пределами установки

Воздействие: Пробой изоляции обмотки электродвигателя приводит к его раннему выходу из строя и незапланированному простою
Инструмент для измерения и диагностики: Трехфазный анализатор качества электроэнергии
Критичность: Высокая

1.2 Дисбаланс напряжения

Трехфазные распределительные сети используют и для подачи питания на однофазные нагрузки. Несбалансированность импеданса или распределения нагрузки может способствовать дисбалансу всех трех фаз. Потенциальные неисправности могут возникать в подводящих кабелях электродвигателя, в концевой заделке кабеля на двигателе и, возможно, в самих обмотках. Подобный дисбаланс способен приводить к возникновению перенапряжений в фазных цепях трехфазной энергосистемы. На простейшем уровне напряжения всех трех фаз всегда должны иметь одинаковую величину.

Дисбаланс напряжения в импедансе или распределении нагрузки может способствовать дисбалансу всех трех фаз

Воздействие: Дисбаланс создает чрезмерный ток в одной или нескольких фазах, что приводит к увеличению рабочих температур и последующему пробою изоляции
Инструмент для измерения и диагностики: Трехфазный анализатор качества электроэнергии
Критичность: Средняя

1.3 Гармонические искажения

Если говорить просто, гармоники представляют собой любой нежелательный дополнительный источник высокочастотных переменных напряжений или токов, энергия которого подается в обмотки электродвигателя.

Эта дополнительная энергия не используется для вращения вала электродвигателя, но циркулирует в обмотках и, в конечном итоге, выделяется в виде тепла внутри двигателя. Дополнительный нагрев со временем ухудшает изоляционные качества обмоток. Однако, некоторое количество гармоник является нормальным. Для исследования гармонических искажений используйте анализатор качества электроэнергии, который позволит проконтролировать уровни электрического тока и температуры на трансформаторах и убедиться, что они не перегружены. Каждая гармоника имеет приемлемый уровень, который определяется такими стандартами, как IEEE 519-2014.

Гармонические искажения – электродвигатель

Воздействие: Снижение эффективности электродвигателя приводит к росту расходов и увеличению рабочих температур
Инструмент для измерения и диагностики: Трехфазный анализатор качества электроэнергии
Критичность: Средняя

Импульсное регуляторы приводов

2.1. Помехи в цепях ШИМ-регуляторов

В приводах для регулировки частоты вращения используется метод широтно-импульсной модуляции (ШИМ). Помехи в цепях питания ШИМ-регуляторов возникают в случае несогласованности источника питающего напряжения и цепей регулятора. Все это приводит к превышению уровня помех выше уровня напряжения питания.

  1. Захваченная форма сигнала
  2. Допустимая огибающая
  3. Форма сигнала напряжения
Воздействие: Пробой изоляции обмотки электродвигателя приводит к незапланированному простою
Инструмент для измерения и диагностики: 4-канальный высокоскоростной портативный осциллограф
Критичность: Высокая

2.2 Блуждающие токи

Блуждающие токи циркулируют через системы защитного заземления, вызывая спонтанные отключения или, в некоторых случаях, перегрев обмоток.

Воздействие: Внезапное срабатывание выключателя цепи из-за протекания тока защитного заземления
Инструмент для измерения и диагностики: 4-канальный высокоскоростной портативный осциллограф
Критичность: Низкая

2.3 Перегрузки при эксплуатации

Когда электродвигатель находится под чрезмерной нагрузкой, возникает его перегрузка. Перегрузку электродвигателя сопровождают такие основные симптомы, как чрезмерный ток потребления, недостаточный крутящий момент и перегрев. Основной причиной отказа электродвигателя является его перегрев. В случае перегрузки отдельные компоненты электродвигателя, включая подшипники, обмотки и другие компоненты, могут работать нормально, но сам электродвигатель будет продолжать нагреваться. По этой причине имеет смысл начать поиск неисправностей с проверки перегрузки электродвигателя. Поскольку 30% отказов электродвигателей вызваны их перегрузкой, важно понять, как измерять и идентифицировать перегрузку двигателя.

Когда электродвигатель находится под чрезмерной нагрузкой, возникает его перегрузка

Воздействие: Преждевременный износ электрических и механических компонентов электродвигателя, приводящий к неисправности
Инструмент для измерения и диагностики: Цифровой мультиметр
Критичность: Высокая

3. Механические причины выхода из строя электродвигателя

3.1. Несоосность электродвигателя

Несоосность возникает когда приводной вал электродвигателя неправильно совмещен с нагрузкой или смещен компонент, который обеспечивает соединение электродвигателя с нагрузкой. Многие специалисты считают, что несоосность можно устранить и компенсировать гибким соединением, но такое соединение защищает только от смещения.

Даже с гибким соединением смещенный вал будет передавать на электродвигатель вредные циклические усилия, что приведет к избыточному износу самого электродвигателя и увеличению кажущейся механической нагрузки.

Кроме того, несоосность может передавать вибрацию как на нагрузку, так и на приводной вал электродвигателя. Существует несколько типов несоосности:

  1. Угловая несоосность – осевые линии валов пересекаются
  2. Параллельная несоосность – осевые линии валов параллельны, но не концентричны.
  3. Комбинированная несоосность – комбинация параллельной и угловой несоосности.

Примечание. Почти все случаи несоосности относятся к комбинированным, однако специалисты, говоря о несоосности, рассматривают два отдельных типа, потому что несоосность легче корректировать, работая с угловыми и параллельными компонентами по отдельности.

Угловая несоосность

Параллельная несоосность

Несоосность возникает, когда приводной вал электродвигателя неправильно совмещен с нагрузкой, или смещен компонент, который обеспечивает соединение электродвигателя с нагрузкой.

Воздействие: Преждевременный износ механических компонентов привода, что приводит к преждевременному повреждению
Инструмент для измерения и диагностики: Лазерный инструмент для центрирования валов
Критичность: Высокая

3.2 Дисбаланс вала

Дисбаланс – это состояние вращающейся детали, когда центр массы не совпадает с осью вращения. Другими словами, где-то на роторе имеется точка дисбаланса. Хотя полностью устранить дисбаланс электродвигателя практически невозможно, можно определить, не выходит ли он за пределы нормального диапазона, и принять меры для устранения проблемы.

Дисбаланс может быть вызван многочисленными факторами, включая:

  • накопление грязи;
  • отсутствиеразрушение балансировочных элементов;
  • брак при производстве;
  • неравномерное распределение массы в обмотках электродвигателя и другие факторы, связанные с износом.

Определить, сбалансирована ли вращающаяся машина, поможет тестер или анализатор вибрации.

1. Большой пик 124 ВдБ при скорости вращения 1Х вызван дисбалансом. 2. Причинами других пиков являются различные явления в машине.

Дисбаланс – это состояние вращающейся детали, когда центр массы не совпадает с осью вращения.

Воздействие: Преждевременный износ механических компонентов привода, что приводит к преждевременному повреждению
Инструмент для измерения и диагностики: Тестер вибрации
Критичность: Высокая

3.3 Люфт вала

Люфт возникает, когда между деталями имеется чрезмерный зазор. Он может появляться в нескольких местах: Причиной возникновения люфта при вращении является чрезмерный зазор между вращающимися и неподвижными элементами машины, например, в подшипнике. Не связанный с вращением люфт возникает между двумя обычно неподвижными деталями, например, между ножкой и основанием, или корпусом подшипника и машиной.

Как и в случае других источников вибрации, чтобы не терять деньги, важно знать, как обнаружить люфт и устранить проблему. Тестер или анализатор вибрации поможет определить, страдает ли вращающаяся машина от люфта.

Люфт возникает, когда между деталями имеется чрезмерный зазор

Воздействие: Ускоренный износ вращающихся компонентов, приводящий к механическому разрушению
Инструмент для измерения и диагностики: Тестер вибрации
Критичность: Высокая

3.4 Износ подшипника

Неисправный подшипник имеет увеличенное сопротивление, выделяет больше тепла и имеет более низкую эффективность из-за механических проблем, недостаточной смазки или большого износа.

Неисправность подшипника может возникать, когда:

  1. Нагрузка превышает ту, на которую рассчитан подшипник.
  2. Смазка подшипника недостаточная или неправильная.
  3. Уплотнение подшипника неэффективное.
  4. Вал имеет несоосность.
  5. Подшипник неправильно посажен.
  6. Подшипник имеет нормальный износ.
  7. Индуцируется напряжение на концах вала.

Когда подшипник начинает выходить из строя, то создает каскадный эффект, который ускоряет поломку электродвигателя!

Порядка 13% отказов электродвигателей вызваны неисправностью подшипника, и более 60% механических неисправностей в установках вызваны износом подшипников, поэтому важно знать, как устранить эту проблему.

Неисправный подшипник имеет увеличенное сопротивление, выделяет больше тепла и имеет более низкую эффективность из-за механических проблем, недостаточной смазки или большого износа.

Воздействие: Ускоренный износ вращающихся компонентов, приводящий к повреждению подшипника
Инструмент для измерения и диагностики: Тестер вибрации
Критичность: Высокая

Факторы, связанные с неправильной установкой

Неплотно прилегающее основание

Неплотное прилегание основания Угловое неплотное прилегание основания Причина в основании Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:

  • Параллельное неплотное прилегание основания — возникает, когда одна монтажная опора расположена выше, чем три другие.
  • Угловое неплотное прилегание основания — возникает, когда одна из монтажных опор не параллельна или не перпендикулярна по отношению к монтажной поверхности.

В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.

Влияние: нарушение центрирования компонентов механического привода

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830

Критичность: средняя

Напряжение трубной обвязки

Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:

  • смещение в фундаменте;
  • недавно установленный клапан или другой компонент;
  • предмет, ударяющий, сгибающий или просто давящий на трубу;
  • сломанные или отсутствующие крепления для труб или настенная арматура.

Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.

Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.

Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830

Критичность: низкая

Напряжение на валу

Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя.

Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.

Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.

Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.

Критичность: высокая.

Четыре стратегии для достижения успеха

Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя. Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:

  1. Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
  2. Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
  3. Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
  4. Построение графиков отдельных измерений для выявления основных тенденций. Любые изменения в линии тенденций более чем на +/- 10-20 % (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.

Уважаемые, подскажите, кто соображает в эл. движках. Проблема такая, двигатель 2,2 кВт, 2800 об/мин, 220 в установлен на компрессоре sumake, после запуска секунд через 5 отключается. Срабатывает токовое реле (пимпочка выстреливает) Изначально сдохли кандеры, пусковое и рабочее, поменял. После чего он работал нормально. Вчера разобрал движок, нашел там еще биметаллическое реле с подгоревшим контактом, его выкинул, провода спаял. Все равно отключается через 5 сек. Что может быть? Да кто -писал, что может быть межвитковое замыкание. Но разве будет двигло с такой неисправностью запускаться? Кстати заметил вроде, как более бодрый у него запуск стал.


Изменено 06.04.2014 17:52 пользователем Chop13

9 основных неисправностей электродвигателя

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

1 фазный мотор теряет скорость под нагрузкой

Зарегистрируйте новую учётную запись в нашем сообществе. Это очень просто!

Войти

Уже есть аккаунт? Войти в систему.

Последние посетители 0 пользователей онлайн

Ни одного зарегистрированного пользователя не просматривает данную страницу

  • Уже зарегистрированы? Войти
  • Регистрация
Главная
Активность
  • Создать.

Важная информация

Мы разместили cookie-файлы на ваше устройство, чтобы помочь сделать этот сайт лучше. Вы можете изменить свои настройки cookie-файлов, или продолжить без изменения настроек.

Потеря мощности электродвигателя причины

Потери мощности в электродвигателях делятся на постоянные и переменные. Они включают:

Потери в стали (потери в сердечнике), которые зависят от напряжения и поэтому постоянны для электродвигателя независимо от его нагрузки;

· Потери от трения (механического) и от вентиляции. Эти потери постоянны для данной скорости и не зависят от нагрузки;

Потери от тока возбуждения или тока намагничивания AM;

· Потери в меди, известные как потери I 2 R, пропорциональны квадрату тока нагрузки.

Потери в стали состоят из гистерезисных потерь, зависящих от физических характеристик используемой стали, и потерь на вихревые токи, которые определяются конструкцией и сборкой стальных листов. Потери в стали влияют на коэффициент мощности электродвигателя, так как возникают из-за потребления реактивного тока. При малых нагрузках основную роль играют потери в стали, что приводит к низким значениям коэффициента мощности электродвигателя.

Даже при полной нагрузке асинхронный двигатель имеет относительно низкий коэффициент мощности индуктивного характера и составляет 0,8 — 0,9. Чтобы свести к минимуму возможное снижение КПД и коэффициента мощности, необходимо, чтобы номинальная мощность электродвигателя была как можно ближе к существующей нагрузке электродвигателя.

Остальные потери, кроме потерь на трение, относятся к классу «тепловых» потерь, которые определяют тепловой режим работы электродвигателя.

Потеря мощности электродвигателя причины

Поскольку ток двигателя зависит от статического момента и магнитного потока, для каждой статической нагрузки существует ток возбуждения, при котором общие потери минимальны.

Ремонтные работы приводят к тому, что результирующая индукция после каждого из ремонтов уменьшается. При этом увеличиваются потери на вихревые токи. Установлено, что каждый последующий ремонт увеличивает потери стали на 5-13%. Это приводит к резкому увеличению термического напряжения и быстрому разрушению утеплителя.

| следующий урок ==>
Энергетический баланс энергетических потоков силового канала | КПД электродвигателя

Дата добавления: 15.01.2014; Просмотров: 1708; Нарушение авторского права? ;

Ваше мнение важно для нас! Был ли опубликованный материал полезен? Да | Нет

Наиболее частыми неисправностями в электрической части являются короткие замыкания внутри и между обмотками электродвигателя, замыкания обмоток на корпус, а также обрывы в обмотках или во внешней цепи (силовые кабели и пусковые устройства).

Из-за указанных неисправностей электродвигателей может произойти: невозможность запуска электродвигателя; опасный нагрев его обмоток; ненормальная скорость электродвигателя; аномальный шум (гудение и стук); неравенство токов в одиночных фазах.
Механические причины, вызывающие выход из строя электродвигателей, чаще всего наблюдаются в неправильной работе подшипников: перегрев подшипников, утечки из них масла, появление ненормального шума.

Основные виды неисправностей электродвигателей и их причины.

Асинхронный двигатель не запускается (перегорели предохранители или сработала защита). Причиной этого в электродвигателях с контактными кольцами может быть закороченное положение пускового реостата или контактных колец. В первом случае необходимо привести реостат пусковой в нормальное (исходное) положение, во втором — поднять устройство, замыкающее контактные кольца.

Также нет возможности запустить электродвигатель из-за короткого замыкания в цепи статора. Обнаружить короткозамкнутую фазу можно, прикоснувшись к увеличению нагрева обмотки (прощупывание следует производить, предварительно отключив электродвигатель от сети); по внешнему виду обугленной изоляции и по замерам. Если фазы статора соединены звездой, измеряются значения токов, потребляемых сетью отдельными фазами. Фаза с закороченными витками потребляет больше тока, чем неповрежденные фазы. При соединении отдельных фаз треугольником токи в двух проводах, подключенных к неисправной фазе, будут иметь более высокие значения, чем в третьем, который подключен только к неповрежденным фазам. Пониженное напряжение используется для измерений.

При включении асинхронный электродвигатель не двигается. Причиной этого может быть обрыв одной или двух фаз цепи питания. Чтобы определить положение обрыва, сначала осмотрите все элементы цепи, питающей электродвигатель (проверьте целостность предохранителей). Если обрыв фазы не может быть обнаружен при внешнем осмотре, необходимые измерения производятся с помощью мегомметра. Для этого сначала отключают статор от питающей сети. Если обмотки статора соединены в звезду, то один конец мегомметра подключается к нулевой точке звезды, после чего другие концы обмотки поочередно касаются другим концом мегомметра. Подключение мегомметра в конце исправной фазы даст нулевое показание, подключение к фазе с разомкнутой цепью покажет высокое сопротивление цепи, то есть наличие в ней разомкнутой цепи. Если нулевая точка звезды недоступна, два конца мегомметра попарно касаются всех выводов статора. Прикосновение мегомметра к исправным фазам покажет нулевое значение, прикосновение к концам двух фаз, одна из которых неисправна, покажет высокое сопротивление, то есть обрыв цепи в одной из этих фаз.

В случае соединения обмоток статора треугольником необходимо отключить обмотку в одной точке, а затем проверить целостность каждой фазы в отдельности.
Фаза с паузой иногда определяется на ощупь (остается холодной). Если во время работы электродвигателя произойдет обрыв одной из фаз статора, он продолжит работу, но начнет гудеть сильнее, чем при нормальных условиях. Найдите поврежденную фазу, как описано выше.

При работе асинхронного двигателя обмотки статора сильно нагреваются. Это явление, сопровождающееся сильным гудением электродвигателя, наблюдается при коротком замыкании в любой обмотке статора, а также при двойном замыкании обмотки статора на корпус.

Работающий асинхронный двигатель загудел. При этом снижается его скорость и мощность. Причина нарушения режима работы электродвигателя — потеря одной фазы.
Когда вы включаете двигатель постоянного тока, он не движется. Причиной тому может быть перегоревший предохранитель, обрыв в цепях питания, обрыв резистора в пусковом реостате. Сначала внимательно осмотрите, а затем проверьте целостность указанных элементов с помощью мегомметра или контрольной лампы с напряжением не более 36 В. Если таким способом не удается определить место обрыва, переходите к проверке целостности обмотки якоря. Обрыв обмотки якоря чаще всего наблюдается на стыках коллектора с участками обмотки. Путем измерения падения напряжения между пластинами коллектора определяется место повреждения.

Другой причиной такого явления может быть перегрузка электродвигателя. Проверить это можно, запустив электродвигатель без нагрузки, предварительно отсоединив его от приводного механизма.

Когда двигатель постоянного тока работает, предохранители перегорают или срабатывает максимальная защита. Укороченное положение пускового реостата может быть одной из причин этого явления. В этом случае реостат переводится в нормальное стартовое положение. Это явление также можно наблюдать, когда рукоятка реостата вытягивается слишком быстро, поэтому при повторном включении электродвигателя реостат вытягивается медленнее.

Во время работы электродвигателя наблюдается усиление нагрева подшипника. Причиной повышенного нагрева подшипника может быть недостаточный зазор между шейкой вала и вкладышем подшипника, недостаточное количество или избыток масла в подшипнике (проверьте уровень масла), загрязнение масла или использование неадекватных марок масла. В последнем случае замена масла осуществляется путем предварительной промывки подшипника бензином.
При запуске или во время работы электродвигателя из пространства между ротором и статором появляются искры и дым. Возможной причиной этого явления может быть царапанье ротора о статор. Это происходит, когда подшипники работают под большим приводом.

При работающем двигателе постоянного тока под щетками наблюдаются искры. Причинами такого явления могут быть неправильный подбор щеток, слабое давление на коллектор, недостаточно гладкая поверхность коллектора и неправильное расположение щеток. В последнем случае необходимо переместить щетки, расположив их на нейтральной линии.
Во время работы электродвигателя наблюдается усиление вибраций, которое может появиться, например, из-за недостаточной прочности крепления электродвигателя к фундаментной плите. Если вибрация сопровождается перегревом подшипника, это указывает на осевое давление на подшипник.

Таблица 1. Неисправности асинхронных электродвигателей и способы их устранения

Кисти блестят, некоторые кисти и аксессуары к ним сильно нагреваются и пригорают

Электродвигатели — самые распространенные потребители электроэнергии, используемые коммунальными предприятиями. На них приходится около 80% потребления электроэнергии. Большая часть установленной мощности состоит из асинхронных электродвигателей.

При проведении энергоаудита необходимо проверить соответствие мощности привода (электродвигателя) мощности, потребляемой нагрузкой, поскольку завышение мощности электродвигателя приводит к снижению КПД и cos … При уменьшении степени нагрузки двигателя доля реактивной мощности, расходуемой на создание магнитного поля системы, увеличивается по отношению к активной мощности и величине cos … Капитальные затраты на замену двигателя на другой двигатель соответствующей номинальной мощности являются разумными, когда его нагрузка составляет менее 45%; при нагрузке 45-75% для замены требуется экономическая оценка меры, а при нагрузке более 70% замена нецелесообразна.

КПД зависит от типа, скорости, времени нагрузки двигателя, а также его мощности: для двигателей 5 кВт при 100% КПД нагрузки = 80%, для двигателя 150 кВт КПД = 90%. Для двигателей мощностью 5 кВт при 50% нагрузке КПД составляет 55%, для двигателей мощностью 150 кВт КПД составляет 65%.

Когда нагрузка двигателя падает до 50% или менее, его эффективность начинает быстро падать из-за того, что потери в стали преобладают.

Общие потери в электродвигателе состоят из четырех основных компонентов (см. Рис. 2):

— Потери в стали (потеря намагничивания), связанные с напряжением питания, постоянны для каждого двигателя и не зависят от нагрузки.

— Активные потери в меди I (2) R, пропорциональные квадрату тока нагрузки.

— Потери из-за трения, постоянные для данной скорости и не зависящие от нагрузки.

— Дополнительные потери рассеивания — в зависимости от нагрузки.

Уменьшая напряжение питания электродвигателя с помощью регулятора, можно уменьшить избыточное для рассматриваемого режима нагрузки магнитное поле в стали, уменьшить потери в стали и уменьшить их долю в общей энергии расход, т.е.повышение КПД двигателя. Сам регулятор напряжения (обычно тиристорный) потребляет мало энергии. Его самопотребление становится очевидным, когда двигатель работает с полной нагрузкой. Часто на холостом ходу расходуется почти столько энергии, сколько необходимо для работы при низкой нагрузке. Переключение обмоток двигателя 7,5 кВт, работающего в номинальном режиме (линейное напряжение 380 В) по схеме «треугольник», на схему звезды при работе на пониженной нагрузке 1 кВт (режим холостого хода) позволяет снизить потери от 0,5 кВт до 0,25 кВт (рис. 3).

Автоматическое переключение обмоток со схемы треугольник на треугольник на схему со звездой в зависимости от нагрузки является простейшей схемой управления для двигателя, который длительное время работает при малой нагрузке. Следует избегать холостого хода двигателя.

Вариаторы скорости широко используются в системах с регулируемой скоростью (насосы, вентиляторы и т.д.). Расчетные значения экономии энергии при использовании управляемого электропривода в системах вентиляции, работающих на переменных режимах — 50%, в системах сжатия — 40-50%, в нагнетателях и вентиляторах — 30%, в насосных системах — 25%.

Тиристорные регуляторы напряжения дешевле, диапазон регулировки скорости вращения меньше (уменьшение на 10-15% ниже номинальной); частотные регуляторы (чаще всего в конструкции транзисторов) дороже, диапазон регулировки шире. Стоимость регулятора скорости электродвигателя примерно равна стоимости электродвигателя.

Для электроприводов, которые большую часть рабочего времени работают при нагрузке, которая достигает 30% или менее от номинальной мощности и где регулирование может осуществляться путем изменения скорости электропривода (насосы, вентиляторы, мешалки и т.д.), Эффективно использование частотных регуляторов скорости электродвигателя. Для двигателя мощностью 15 кВт в 1996 году стоимость электронной системы регулирования частоты составляла примерно 200 долларов США за кВт. Сейчас она упала до 85-100 долларов за кВт. Стоимость единицы уменьшается с увеличением удельной мощности привода (см. Рис. 4).

Рис. 2. Добавление компонентов потерь мощности в электродвигателях

Рис. 3. Влияние на потери переключения «треугольник» на «звезду» стандартного двигателя 7,5 кВт

Рисунок 4. Стоимость (с НДС) 1 кВт мощности преобразователя частоты ЭИ-7001 ПКФ «ВЕСПЕР» Москва осень 1999 г

Перечень общих мероприятий по энергосбережению на установках с электродвигателями:

— Мощность двигателя должна соответствовать нагрузке.

— При частых холостых оборотах двигатель должен легко останавливаться.

— Необходимо эффективно защитить крыльчатку электродвигателя нагнетательной системы, чтобы исключить возможный перегрев и увеличить долю протечек.

— Проверить качество работы трансмиссии.

— На эффективность системы влияет смазка подшипников и групп сцепления; применить правильный тип трансмиссии;

— Рассмотрите возможность использования электронных регуляторов скорости в двигателях, которые некоторое время работают с частичной нагрузкой.

— Оцените возможность использования двигателей с высокой энергоэффективностью (EE), поскольку общая экономия энергии может в 15 раз превышать стоимость электродвигателя.

— Провести качественный ремонт двигателя, отказаться от использования неисправных или плохо отремонтированных двигателей.

#1

OFFLINE
 

pav29

    Абитуриент

  • Пользователи+
  • Pip

  • 3 сообщений
  • Из:Ижевск

Отправлено 26 Апрель 2016 — 22:01

Во время работы, один из двух шаговых двигателей, по оси Х отклюается.

После отключения станка от пульта управления, все приходит в норму, и через некоторое врямя снова отключение. При отключении одного ШД портал идет рывками.

Станок пензенской сборки, под управлением Mach 3.

Шаговые двигатели PL110H168.

Помогите кто чем может.

  • 0

  • Наверх


#2

OFFLINE
 

Андрей Кулагин

Андрей Кулагин

  • Пол:Мужчина
  • Город:Ярославль
  • Интересы:По профессии я фрезеровщик — универсал 5 разряда
    По образованию инженер- механик
    Мое хобби ремонт станков ЧПУ
  • Из:Ярославля(до Москвы 3,5 часа лету)

Отправлено 27 Апрель 2016 — 15:12

Надо смотреть — что еще сказать

Я конечно грешу на пурелоджиковские драйвера (в последний раз ставились на эти станки)

Дайте больше инфы по станку

фото и видео

  • 0

Жизнь надо прожить так, чтобы Дьявол был доволен, а Бог особых претензий не имел.
Теперь я freelancer , кому что нужно — стучитесь в скайп ingener20092

  • Наверх


#3

OFFLINE
 

Zebra

Отправлено 27 Апрель 2016 — 16:09

Скорей всего идет перегрев одного контроллера . Так сказать уходит в защиту после перезагрузки снова нормализуется . Смотрите прилегает ли радиатор к чипу если не плотно поднятие и можно добавить термопасты и доп охлаждение.

  • 0

  • Наверх


#4

OFFLINE
 

pav29

pav29

    Абитуриент

  • Пользователи+
  • Pip

  • 3 сообщений
  • Из:Ижевск

Отправлено 28 Апрель 2016 — 14:21

Связался с производителем, сказали что сбит драйвер, необходимо приобрести новый, но в начале рабочего дня запускам станок и все работает.

Может из за перегрева отключатся?

  • 0

  • Наверх


#5

OFFLINE
 

T-Rex

T-Rex

  • Пол:Мужчина
  • Из:Йошкар-Ола

Отправлено 28 Апрель 2016 — 14:32

Может из за перегрева отключатся?

Может.

Возьмите эти два драйвера (благо, они одинаковые и одинаково настроенные) и поменяйте их местами. Сразу станет понятно, внутри драйвера причина, или где-то снаружи.

  • 0

  • Наверх


Основные неисправности и отказы электродвигателей

Электродвигатели, изготовленные на заводе и прошедшие весь комплекс приемосдаточных испытаний, исправны и по своим характеристикам соответствуют паспортным данным. Большинство отказов происходят по причинам, возникающим в процессах, следующих за выпуском готовой машины: погрузка, транспортировка, разгрузка, хранение, монтаж на месте эксплуатации. В этот период электрические машины подвержены резким толчкам, ударам, вибрациям, по своим воздействиям часто выходящими за пределы допустимых.
В процессе хранения машины подвержены воздействию низких температур и влаги, тем более что часто машины хранятся в сырых помещениях и даже на открытых площадках. В результате описанных воздействий неисправности возникают обычно в период приработки машины или даже при первом ее пуске. Например, во время хранения машины под воздействием повышенной влажности внутренняя поверхность сердечника статора и наружная поверхность ротора покрываются слоем ржавчины, заполняющей воздушный зазор между статором и ротором.

При первом же включении двигателя ротор оказывается неподвижным. Это ведет к необходимости разборки двигателя и тщательной очистке заржавевших поверхностей. Частицы ржавчины попадают в обмотку двигателя и оказывают разрушительное воздействие на ее изоляцию. Следует иметь в виду, что неисправности электрических машин, связанные с повреждением изоляции, наиболее нежелательны, так как они ведут к необходимости перемотки машины, а следовательно, требуют ее капитального ремонта. Часто нарушения витковой изоляции становятся причиной местных коротких замыканий. При этом машина перегревается, вращение ротора становится неравномерным, возникает небаланс сил тяжения ротора к статору, приводящий к деформации вала машины. Причины, способные вызвать межвитковые короткие замыкания, возникают и при эксплуатации машины, когда во внутреннюю полость попадают посторонние частицы (пыль, грязь, мелкая металлическая стружка), способные механически повредить изоляцию обмотки.

При работе асинхронных двигателей от преобразователей частоты ПЧ, в которых выходное трехфазное напряжение формируется методом широтно-импульсной модуляции, на входе двигателя возникает напряжение импульсной формы, амплитуда которого может значительно превышать амплитуду синусоидального напряжения первой (основной) гармоники. Это может привести к нарушению межвитковой или межфазовой изоляции и вызвать межвитковые короткие замыкания. Устранению этого нежелательного явления способствует применение сглаживающих фильтров на выходе преобразователя в цепях питания двигателей.

В коллекторных двигателях постоянного тока причинами неисправностей часто являются нарушения работы щеточно-коллекторного узла, способные вызвать усиление искрения или даже круговой огонь на коллекторе. Возможные неисправности электрических машин настолько разнообразны и многочисленны, что описать их полностью не представляется возможным. В таблице ниже приведены наиболее характерные и часто встречающиеся неисправности в электрических машинах, причины, их вызвавшие, и способы устранения этих неисправностей.

Источник: www.agrovodcom.ru

Неисправности электродвигателей

Неисправности электродвигателей возникают в результате износа деталей и старения материалов, а также при нарушении правил технической эксплуатации. Причины возникновения неисправностей и повреждений электродвигателей различны. Нередко одни и те же неисправности вызываются действиями различных причин, а иногда — и совместным их действием. Успех ремонта во многом зависит от правильного установления причин всех неисправностей и повреждений поступающего в ре-мот электродвигателя.
Повреждения электродвигателей по месту их возникновения и характеру происхождения делят на электрические и механические. К электрическим относят повреждения изоляции или токопроводящих частей обмоток, коллекторов, контактных колец и листов сердечников. Механическими повреждениями

считают ослабление крепежных соединительных резьб, посадок, нарушения формы и поверхности деталей, перекосы и поломки. Повреждения обычно имеют очевидные признаки или легко устанавливаются измерениями.

Неисправности часто можно установить лишь по косвенным признакам. При этом приходится не только проводить измерения, но и сопоставлять обнаруженные факты с известными из опыта и делать соответствующие выводы.

Основные неисправности трёхфазных асинхронных электродвигателей и способы их устранения

Основные неисправности трёхфазных асинхронных электродвигателей и способы их устранения

Неисправности обмоток асинхронных электродвигателей и способы их устранения

Замыкание на корпус. При коротком замыкании обмотки на корпус нужно проверить электродвигатель контрольной лампой, пи­таемой от сети (рис. 31).

В отдельных случаях целесообразно разомкнуть обмотку в не­скольких точках и проверить ее по частям. Сначала испытывается

отдельно каждая фаза (рис. 32), а затем полюсно-фазные группы обмотки (рис. 33).

Короткое замыкание витков. При этом замыкаются несколько витков или катушки в целом. Первый способ отыскания поврежде­ния: определяют перегрев, лобовых частей обмотки на ощупь. Вто­рой способ: обмотку питают переменным током повышенной часто­ты (до 400 гц) и прикладывают кусок стали к сердечнику статора по всей окружности. Место повреждения находится под полюсом, там, где сталь притягивается слабо.

Короткое замыкание полюсно-фазной группы, определяется обычно с помощью компаса, передвигаемого по окружности статора

Если обмотки соединены звездой, то положительный полюс ис­точника тока по очереди присоединяют к выводам, а отрицатель­ный — подключают к нулевой точке обмотки.

Этим же методом можно обнаружить и перевёрнутую фазу об­мотки.

При соединении обмотки треугольником нужно разомкнуть од­ну из вершин треугольника, к которой подводится постоянный ток.

Короткое замыкание большей части фазной обмотки определя­ется измерением тока пониженного напряжения или сопротивления фаз обмоток (рис. 35). Повышенный ток одной из фаз и уменьшен­ное сопротивление свидетельствуют о наличии короткого замыкания (рис. 36).

Разрыв цепа. Характерные и часто встречающиеся обрывы воз­никают при нарушении соединения проводников обмотки. Если об­мотка соединена в звезду и не имеет параллельных ветвей, то обрыв фазы обмотки легко обнаруживается контрольной лампой, подклю­чаемой по схеме рисунка 37.

Если обмотка соединена треугольником (без параллельных вет­вей), то её размыкают и каждую фазу отдельно проверяют контрольной лампой.

У электродвигателей, имеющих параллельные вет­ви обмотки, повреждённая фаза определяется по за­мерам токов в отдельных фазах. В дальнейшем по­вреждённая фаза разделя­ется на параллельные вет­ви, которые исследуются от­дельно.

Технические данные электродвигателей постоянного тока типа МП

Источник: trudova-ohrana.ru

Греется ротор электродвигателя

Ротор — вращающийся элемент электрического двигателя, связанный с ведущим валом.

В зависимости от типа мотора роторный механизм может отличаться моделью, маркой, производителем и характеристикой.

Как и другие элементы агрегата, ротор может греться, основные причины:

  1. Мощность роторного механизма не соответствует требованиям, установленным для работы электродвигателя.
  2. Неисправность обмотки (обрыв)
  3. Недостаточная емкость конденсатора.
  4. Недостаточный отвод тепла (плохая работа крыльчатки).
  5. Обрыв или недостаточный контакт стержней беличьей клетки и короткозамкнутых колец.
  6. Заклинило вал. Первые признаки – выбивает автомат или перегорает предохранитель. При замере тока мультиметром показания завышены. Это же касается и исполнительного механизма, который подсоединен к электродвигателю через привод и тоже может заклинуть. Для решения проблемы отсоедините электромотор от приводящего им устройства и попытайтесь вручную провернуть вал.
  7. Перекос или повреждение подшипников (скольжения или качения). Если вал ротора вручную не проворачивается, то следует убедиться в исправности подшипников. Для подшипников скольжения характерная проблема – отсутствие смазки, что привело к быстрому их износу. Как правило, проводят замену изделий.
  8. Перекос и деформация (перегиб) вала в результате неравномерных или повышенных нагрузках тоже приводит к перегреву электродвигателя. Как правило, эта проблема характерна для мощных агрегатов с длинными валами.

Чтобы ротор не грелся, необходимо поддерживать оптимальную нагрузку, соблюдать температурный режим и правила эксплуатации.

Ремонт асинхронного электродвигателя

В статье рассмотрим ремонт асинхронного электродвигателя и его частей. Асинхронный электродвигатель – самый простой, долговечный и распространенный электромотор. Спектр его применения: заточные станки, мини-пилорамы и другие устройства, не требующие работы от аккумуляторов и регулировки скорости. В старых стиральных машинах они работают до сих пор.

Эксплуатируются трехфазные и однофазные асинхронные электродвигатели. Некоторые трехфазные моторы приспосабливаются для работы в однофазных сетях включением подключением фазосдвигающего конденсатора.

Рассмотрим характерные неисправности асинхронных двигателей и методы их устранения.

Греется 3-х фазный двигатель, подключенный на 220 В

Многие умельцы подключают трехфазный двигатель с помощью конденсаторов на 220 В. Впоследствии они жалуются, что агрегат по какой-то причине греется.

Этому может быть несколько объяснений:

  1. Межвитковое замыкание обмоток.
  2. Неправильный выбор конденсатора (по емкости, типу).
  3. Ошибка в схеме подключения.
  4. Отсутствие достаточного охлаждения (актуально для двигателей большой мощности).
  5. Длительная работа на холостом ходу.

Остальные проблемы такие же, как и в остальных типах электрических двигателей.

Ремонт электрической части асинхронного электродвигателя

Признаками неисправностей асинхронного электродвигателя, связанных с электрикой, являются:

  • Срабатывание защитных устройств от перегрузки или короткого замыкания
  • Появление запахов горелой изоляции
  • Искрение и дым внутри мотора

Перегрев корпуса в процессе работы может указывать на неисправность в обмотке двигателя, но чаще он свидетельствует о недопустимой механической нагрузке на валу. По той же причине срабатывает защита от перегрузки. Но она работает и при витковых замыканиях в обмотке статора. Поэтому первое, что нужно проверить после срабатывания защиты – свободно ли вращается вал, а также попытаться запустить двигатель без нагрузки, отсоединив от него агрегат.

При срабатывании защиты от коротких замыканий проверка на холостом ходу не требуется. Порядок действий при этом такой:

Средство проверки

Действие Норма
Отсоединить кабель от двигателя и проверить его сопротивление изоляции. Если оно менее 0,5 МОм, кабель заменить Мегаомметр на напряжение 1000 В
При наличии фазосдвигающих или пусковых конденсаторов – проверить их исправность Мультиметр
Проверить исправность коммутационной аппаратуры У трехфазного двигателя на него должны поступать все три фазы, иначе он перегреется и сгорит Мультиметр или указатель напряжения
Убедиться, что в барно электродвигателя нет следов короткого замыкания и перегрева контактов Визуально
Измерить сопротивление изоляции между обмоткой двигателя и его корпусом Не менее 0,5 МОм Мегаомметр на напряжение 500 В

Сопротивление изоляции, если оно равно нулю, определяется и мультиметром. Но ее увлажнение или неполное повреждение покажет только мегаомметр. Он измеряет сопротивление, прикладывая к тестируемому объекту повышенное напряжение.

Мегаомметр

Если сопротивление низкое, то обмотку статора можно попробовать просушить, пропуская через него горячий воздух от строительного фена или поместив в печь. Если корпус двигателя из силумина, температура сушки выбирается такой, чтобы его не расплавить.

Если просушка не помогла или изоляция обмоток электродвигателя равна нулю, его вскрывают и осматривают. Хотя при любом результате осмотра: механическое повреждение обмоток статора, потемнение или обугливание обмотки – статор отправляется в перемотку. Перемотать самостоятельно асинхронный двигатель очень сложно.

Если причину отключения от защиты установить не удалось, возможно, в обмотке витковое замыкание. У трехфазного двигателя оно определяется сравнением сопротивлений обмоток по фазам. У однофазных сопротивление обмоток сравнивают с паспортными значениями. Но для этого недостаточно мультиметра – его точности не хватит, чтобы почувствовать разницу. Для измерений применяют специальные приборы – омметры с классом точности 0,5 и выше.

Замыкание между собой нескольких витков приводит к нагреву замкнутого участка. Иногда его можно определить по потемнению изоляции, иногда – только прибором. В любом случае потребуется перемотка статора.

Сгоревшая обмотка статора

Еще один дефект, требующий отправки статора двигателя в перемотку – обрыв обмотки. Его можно определить и мультиметром. Иногда обрыв можно устранить, найдя места соединений обмоточного провода с выводами и место соединения обмоток в звезду. Если контакт пропал там, то провода нужно зачистить и спаять снова.

Источник: electric-tolk.ru

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

5.8. Основные неисправности Асинхронных электродвигателей и рекомендации по их устранению

В таблице 5.3 рассмотрены некоторые наиболее часто встречающиеся неисправности асинхронных двигателей и приведены общие рекомендации по их устранению [1].

Неисправности асинхронных электродвигателей и рекомендации по их устранению

Неисправность и ее признаки

Определение и устранение неисправностей

Активная сталь статора равномерно перегрета, хотя нагрузка двигателя не превышает номинальной

Напряжение сети выше номинального

Снизить напряжение сети до номинального или усилить вентиляцию двигателя

Активная сталь при холостом ходе двигателя и номинальном напряжении сети местами сильно нагревается

1. Местные замыкания между отдельными листами активной стали, вызванные заусенцами или задеванием ротора о статор. 2. Зубцы активной стали в отдельных местах выгорели, и оплавлены вследствие коротких замыканий в обмотке статора или пробоя обмотки на корпус.

1. Удалить заусенцы, разъединить соединенные листы стали и прола-кировать их изоляционным лаком воздушной сушки.

2. Вырубить или вырезать поврежденные места. Между отдельными листами проложить тонкий электрокартон или пластинки слюды и пролакировать их изоляционным лаком. В случае большого количества повреждений необходимо произвести полную перешихтовку стали с перемоткой статора.

Вся обмотка статора равномерно перегрета

1. Двигатель перегружен или нарушена его нормальная вентиляция.

2. Напряжение на выводах двигателя ниже номинального, вследствие чего двигатель при номинальной мощности перегружен током.

3. Обмотка статора соединена не в звезду, а в треугольник.

1. Снизить нагрузку или усилить вентиляцию (запросить завод-изготовитель о способах усиления вентиляции).

2. Повысить напряжение до номинального или уменьшить ток нагрузки до номинального.

3. Соединить обмотку статора в звезду.

Обмотка статора местами сильно нагревается. Ток в отдельных фазах неодинаковый. Двигатель сильно гудит и тормозится

1. Витковое замыкание в обмотке статора.

2. Короткое замыкание между двумя фазами.

1.В основном определяется ощупыванием обмотки после ее отключения.

2. Поврежденное место отремонтировать или же перемотать поврежденную часть обмотки.

Вся обмотка ротора равномерно перегрета. Двигатель имеет пониженную частоту вращения –

1. Машина перегружена.

2. Вентиляционные пути машины засорились; активная сталь и обмотки покрылись теплоизо­лирующим слоем мелких волокон и пыли.

3. Засорились воздушные фильтры

1. Снизить нагрузку. При отсутствии искрения щеток усилить вентиляцию машины.

2. Тщательно очистить машину и продуть сжатым, чистым и сухим воздухом (давление не более 0,2 МПа).

3. Матерчатые фильтры очистить от грязи и пыли

Ротор, а иногда и статор перегреваются. Двигатель гудит, ток в статоре сильно пуль­сирует. Двигатель с на­грузкой плохо запус­кается и не развивает номинальной частоты вращения; момент вра­щения меньше номи­нального

1. Плохой контакт в пайках лобовых частей обмотки или нулевой точке, в переходных со­единениях между стерж­нями или в соединениях между параллельными группами.

2. Плохой контакт в соединениях обмотки с контактными кольцами.

3. Плохой контакт в соединениях между кон­тактными кольцами и пусковым реостатом или в пусковом реостате.

1. Проверить все пайки обмотки ротора; те из них, которые неисп­равны или внушают подозрение, пе­репаять. Если наружным осмотром не удается обнаружить место пло­хой пайки, производят проверку ме­тодом падения напряжения.

2. Проверить контакты токопроводов в местах соединения их с об­моткой и контактными кольцами.

3. Проверить исправность контак­тов в местах присоединения прово­дов к ротору и реостату, проверить и почистить контакты и щетки пускового реостата.

Двигатель не за­пускается

Отсутствует ток в ста­торе, что может наблю­даться из-за перегорания предохранителей или вы­ключения неисправного автоматического выклю­чателя

Поставить новые предохранителя; исправить автоматический выключа­тель

Двигатель не за­пускается; при раз­ворачивании от руки работает толчками и ненормально гудит; в одной фазе статора нет тока

Обрыв в одной фазе цепи сети или внутренний обрыв в обмотке статора. Если обрыв фазы произой­дет во время работы дви­гателя, то при отсутствии надлежащей максимальной защиты может перегореть обмотка статора или ро­тора

Проверить вольтметром напряже­ние на выводах статора. Если имеет­ся обрыв в одной фазе сети или на­пряжение во всех трех фазах несимметрично (в случае перегорания предохранителя или обрыва в одной фазе первичной обмотки трансформа­тора), то устранить неисправность сети. Если сеть исправна, то устра­нить обрыв в обмотке статора

Двигатель не запус­кается несмотря на то, что напряжение на вы­водах статора номи­нальное, а ток во всех трех фазах статора оди­наков

Обрыв в двух (или трех) фазах пускового реостата или в соединительных проводах между ротором и пусковым реостатом

Отыскать с помощью мегоммет­ра или контрольной лампы место обрыва и устранить

Все три напряжения на кольцах равны при неподвижном разом­кнутом роторе

Сильное одностороннее притяжение ротора к ста­тору из-за большой раз­работки вкладышей под­шипников, смещения под-

шипниковых щитов или подшипниковых стояков

Двигатель с короткозамкнутым ротором хорошо запускается без нагрузки; с на­грузкой не запускает­ся

Источник: studfile.net

Неисправности электрических машин переменного тока

1. Перегрев обмотки статора синхронной машины

Причина неисправности:

а) Перегрузка генератора по току б) Межвитковое соединение, короткое замыкание между фазами или заземление в двух местах обмотки статора (междуфазовые напряжения неодинаковы)

Принимаемые меры:

а) Проверить нагрузку, не допускать перегрузки б) Неисправную катушку перемотать или заменить новой. При последовательном соединении всех катушек одной фазы и соединении фаз «звездой» можно временно выключить поврежденную катушку, разрезав и заизолировав ее. При этом количество витков не должно превышать 10% общего числа витков одной фазы. При параллельном соединении катушек или при включении фаз «треугольником» необходимо отключить соответствующее количество катушек и в других фазах или параллельных группах

2. Перегрев обмотки возбуждения (ротора)

Причина неисправности:

а) Повышенный ток возбуждения б) Пониженная частота вращения первичного двигателя в) Низкий коэффициент мощности нагрузки г) Межвитковое соединение или замыкание на корпус в двух местах обмотки возбуждения, что иногда сопровождается вибрацией

Принимаемые меры:

а) Уменьшить ток возбуждения б) Проверить и повысить частоту вращения в) Снизить реактивную нагрузку. Принять меры к улучшению коэффициента мощности г) Найти и устранить межвитковое соединение или соединение с корпусом

3. Генератор не дает напряжения

Причина неисправности:

а) Обрыв или плохой контакт в регуляторе возбуждения б) Неисправность автоматического регулятора возбуждения в) Обрыв или плохой контакт в междуполюсных соединениях г) Обрыв выводных концов одной или нескольких полюсных катушек д) Обрыв или плохой контакт в токопроводах между обмоткой и контактными кольцами е) Обрыв или плохой контакт соединительных проводов между возбудителем и контактными кольцами

Принимаемые меры:

Понравилась статья? Поделить с друзьями:
  • Энергия транспортная компания телефон горячей линии 8800 бесплатно
  • Этапы подготовки информации к оценке стоимости предприятия бизнеса
  • Эффективный фонд времени работы одного рабочего рассчитывается как
  • Югорский филиал акционерного общества страховая компания согаз мед
  • Юридическая компания по банкротству физических лиц в екатеринбурге