Устройства и блоки питания вычислительных машин
, 48 Вольт, 36 Вольт, 24 Вольт, 12 Вольт, 9 Вольт, 6 Вольт,
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Линейно-интерактивный (line interactive), Резервный, С двойным переключением (off-line), С двойным преобразованием (on-line)
, , , , , , , , , , ,
Нет, Да
Конвертируемый по установке, Отдельно стоящий (напольный), Стоечный
Встроенный автоматический стабилизатор напряжения (AVR), Пассивный фильтр сетевых помех и ВЧ-шумов в сетях Ethernet 1Gbps (RJ45), Управляемые выходы питания, Автоматическое определение внешнего подключения батарей, Прогнозирование состояния батарей, Выходы питания на нагрузку с функцией фильтрации (без батарейной поддержки), Выходы питания на нагрузку с батарейной поддержкой, Цветовая индикация состояния источника бесперебойного питания (меняющийся экран), Светодиодная индикация режимов работы и (или) состояния индикаторных батарей
, ,
Литий-ионные, Свинцово-кислотные герметичные необслуживаемые
Нет, Да
Нет, Да
Нет, Да
Нет, Да
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , ,
312 Вольт, 288 Вольт, 264 Вольт, 504 Вольт, 480 Вольт, 144 Вольт, 456 Вольт, 432 Вольт, 408 Вольт, 384 Вольт, 600 Вольт, 576 Вольт, 552 Вольт, 528 Вольт, 360 Вольт, 336 Вольт, 240 Вольт, 216 Вольт, 192 Вольт, 168 Вольт, 120 Вольт, 96 Вольт, 72 Вольт, 48 Вольт, 36 Вольт, 24 Вольт, 12 Вольт, 9 Вольт, 6 Вольт
384 Вольт, 360 Вольт, 336 Вольт, 312 Вольт, 288 Вольт, 264 Вольт, 240 Вольт, 216 Вольт, 600 Вольт, 576 Вольт, 552 Вольт, 528 Вольт, 504 Вольт, 480 Вольт, 456 Вольт, 432 Вольт, 408 Вольт, 192 Вольт, 168 Вольт, 144 Вольт, 120 Вольт, 96 Вольт, 72 Вольт, 48 Вольт, 36 Вольт, 24 Вольт, 12 Вольт, 9 Вольт, 6 Вольт
, , , , , , , , , ,
, , , , , , , , , ,
, , , , , , , , , , , , ,
, , , , , , , , , , , , ,
, , , , , , , , , , , , ,
, , , , , , ,
, , , , , , ,
, , , , , ,
, , , , , ,
, , , , , , 0 Градус Цельсия,
, , , , , ,
, , , , , , ,
, , , , , , , , , , ,
REPO, Modbus, Web, USB, Ethernet, SNMP, RS232, RS485, Сухие контакты, Battery Management Systems (BMS)
IP67, IP66, IP65, IP55, IP54, IP44, IP34, IP43, IP33, IP23, IP42, IP32, IP22, IP12, IP41, IP31, IP21, IP11, IP60, IP50, IP40, IP30, IP20, IP10, IP00, IP68
, , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
100 Процент, 95 Процент, 90 Процент, 85 Процент, 80 Процент, 75 Процент, 70 Процент, 40 Процент, 65 Процент, 60 Процент, 55 Процент, 50 Процент, 45 Процент, 35 Процент, 30 Процент, 25 Процент, 20 Процент, 15 Процент, 10 Процент
0 Штука, 1 Штука, , 10 Штука, 9 Штука, 8 Штука, 7 Штука, 6 Штука, 5 Штука, 4 Штука, 3 Штука, 2 Штука
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , , ,
, , , , , , , , , , , , , , , , , , , , , , , ,
60 Штука, , 200 Штука, 192 Штука, 184 Штука, 176 Штука, 168 Штука, 160 Штука, 152 Штука, 144 Штука, 136 Штука, 128 Штука, 120 Штука, 112 Штука, 104 Штука, 100 Штука, 96 Штука, 92 Штука, 88 Штука, 84 Штука, 80 Штука, 76 Штука, 72 Штука, 68 Штука, 64 Штука, 56 Штука, 52 Штука, 50 Штука, 48 Штука, 46 Штука, 44 Штука, 42 Штука, 40 Штука, 38 Штука, 36 Штука, 34 Штука, 32 Штука, 30 Штука, 28 Штука, 26 Штука, 24 Штука, 22 Штука, 20 Штука,
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
, , , ,
, ,
, , ,
, , ,
, ,
, , , , , , , , , ,
, , , , , , , , , , , ,
80 Процент, 75 Процент, 70 Процент, 65 Процент, 60 Процент, 55 Процент, 50 Процент, 45 Процент, 40 Процент, 35 Процент, 30 Процент, 25 Процент, 20 Процент, 15 Процент, 10 Процент
, , , , , , , ,
Локальное хранение журнала события и логов с возможностью складирования их на другом ресурсе, Программное обеспечение для контроля ИБП того же вендора что и производитель ИБП, Русифицированный WEB-интерфейс, Поддержка протокола BACnet over IP, Поддержка протокола Modbus RTU, Поддержка протокола Modbus TCP, Поддержка протокола SNMP, Возможность управления с ПК, Возможность удалённого мониторинга ИБП через интерфейс Ethernet
Нет, Да
Нет, Да
Нет, Да
Спереди и сзади, Спереди
Нет, Да
Нет, Да
Нет, Да
Нет, Да
Нет, Да
3:3, 3:1, 1:1
3Ph+N+PE, 1Ph+N+PE
3Ph+N+PE, 1Ph+N+PE
,
,
60 Герц, 50 Герц
60 Герц, 50 Герц
Вне источника бесперебойного питания на стеллажах, Вне источника бесперебойного питания в шкафах, Внутри источника бесперебойного питания
Отдельностоящие батарейные стеллажи, Отдельностоящие батарейные шкафы, Встроенные в источник бесперебойного питания
Нет, Да
Емкость, Температура, Внутреннее сопротивление, Напряжение
Нет, Да
USB type A, USB type C
N+1, Нет
4 Штука, 3 Штука, 2 Штука,
Да, Нет
Нет, Да
Нет, Да
Нет, Да
Нет, Да
Нет, Да
Благодаря эргономичному корпусу и конфигурации с внутренними аккумуляторами в корпусе устройства, ИБП CyberPower серии HSTP3TKEBC идеально подходят в случаях с ограниченными требованиями к занимаемому пространству.
Полностью готовое решение для организации стабильного и бесперебойного электроснабжения для потребителей максимальной мощностью до 12 кВт и максимальным временем автономной работы 5 минут при полной нагрузке (12 кВт).Стоимость указана за полный комплект оборудования.
Информация об ИБП
Модель ИБП: CyberPower HSTP3T15KEWOB-C
Конфигурация батарей: 40 шт. х 7 АЧ в корпусе ИБП
Трехфазные ИБП серии HSTP3T-С обеспечивают надежную и непрерывную защиту ответственного оборудования от всех типов нарушений электроснабжения. Использование современных IGBT-модулей с широтно-импульсной модуляцией (PWM) в силовой части ИБП и высокоскоростного процессора цифровой обработкой сигналов (DSP) обуславливают высокий КПД устройства (до 98%). Это снижает эксплуатационные затраты и тепловыделение ИБП, что оптимизирует затраты на систему кондиционирования объекта. Два независимых ввода, возможность параллельной работы с резервированием (N+X) или наращиванием мощности вместе с опциями для удаленного управления и мониторинга позволяют удовлетворять запросы заказчиков любого уровня.
Особенности серии ИБП CyberPower HSTP3T-C
- Высокий коэффициент мощности (0.8)
- Два независимых ввода
- Чистый синусоидальный выходной сигнал
- Статический и ручной (сервисный) байпас.
- Онлайн топология ИБП
- Отличная совместимость с ДГУ
- Технология энергосбережения GreenPower
- Автоматическая перезагрузка/перезарядка
- Кнопка аварийного отключения «EPO» (Emergency Power Off),
- Удобное и логически понятное меню, LCD экран.
- RS232, RS485 порты, «сухие» контакты
- SNMP/HTTP удаленное сетевое управление (опция)
- ПО для мониторинга PowerPanel® Business Edition
- Защита от электромагнитных, радиочастотных помех
Наименование |
HSTP3T15KEWOB-C |
Конфигурация |
|
Топология |
Онлайн (синусоидальный выходной сигнал) |
Мощность (ВА / Вт) |
15000 / 12000 |
ВХОД |
|
Напряжение, В |
3ф 380/400/415 (фаза-фаза), 220/230/240 (фаза-нейтраль) |
Частота тока |
50/60 Гц |
Коэффициент входной мощности |
>0.99 |
Диапазон входных напряжений |
-40% ~ +20% (половинная нагрузка) -20% ~ +25% (полная нагрузка) |
Диапазон частоты тока |
40 Гц-70 Гц |
Батарея |
|
Напряжение, В |
±240 |
Количество АКБ в линейке |
40 АКБ 12В |
Ток заряда, А |
10% от мощности прибора (настраивается в диапазоне 1~20%) |
Байпас |
|
Напряжение, В |
3ф 380/400/415 (фаза-фаза), 220/230/240 (фаза-нейтраль) |
Диапазон напряжений байпаса, В |
-20%-+15% |
Перегрузочные способности |
нагрузка до 125% – длительное время работы; нагрузка от 125% до 130% – отключение через 10 мин; нагрузка от 130% до 150% – отключение через 1 мин; нагрузка от 150% до 400% – отключение через 1 сек; нагрузка более 400% – отключение через 200 мс |
Выход |
|
Напряжение, В |
3ф 380/400/415 (фаза-фаза) 220/230/240 (фаза-нейтраль) |
Точность напряжения на выходе |
+1.5% ~ -1.5% (линейная нагрузка) |
Коэффициент искажений на выходе, THD |
<1% (линейная нагрузка), <6% (нелинейная нагрузка) |
Power Factor |
0.8 |
Крест-фактор |
3:1 |
Допустимое отклонение по фазе |
120°±0.5° |
Перегрузочные способности |
<105%, длительная работа 105%<load <110%, переход на байпас через 60 минут 110%<load <125%, переход на байпас через 10 минут 125%<load <150%, переход на байпас через 1 минуту >150%, переход на байпас через 200 мс. |
Общие параметры |
|
КПД |
Обычный режим: 95% ECO режим: 98% |
КПД при работе от батарей |
95% |
Управление |
LCD+LED and keyboard |
Коммуникации |
RS232,RS485,SNMP card, EPO, Dry contacts |
Подключение кабелей |
Подвод снизу, клеммная колодка |
Диапазон рабочей температуры |
0-40 ℃ |
Диапазон температуры хранения |
-40 ℃~70 ℃ |
Относительная влажность |
0-95% (без образования конденсата) |
Уровень шума |
<58dB |
Параллельная работа |
До 4-х устройств |
Физические параметры |
|
Вес (кг) |
164 |
Габариты, мм (В х Ш x Г) |
715*250*840 |
Источник бесперебойного питания
Единица измерения: Штука
Активная мощность:
от
1400000
(Вт)
,
от
1300000
(Вт)
,
от
1200000
(Вт)
,
от
1100000
(Вт)
,
от
1000000
(Вт)
,
от
900000
(Вт)
,
от
800000
(Вт)
,
от
700000
(Вт)
,
от
600000
(Вт)
,
от
500000
(Вт)
,
от
450000
(Вт)
,
от
400000
(Вт)
,
от
350000
(Вт)
,
от
300000
(Вт)
,
от
250000
(Вт)
,
от
200000
(Вт)
,
от
80000
(Вт)
,
от
60000
(Вт)
,
от
50000
(Вт)
,
от
40000
(Вт)
,
от
30000
(Вт)
,
от
20000
(Вт)
,
от
16000
(Вт)
,
от
15000
(Вт)
,
от
700
(Вт)
,
от
500
(Вт)
,
от
400
(Вт)
,
от
300
(Вт)
,
от
100
(Вт)
,
от
10000
(Вт)
,
от
8000
(Вт)
,
от
6000
(Вт)
,
от
5000
(Вт)
,
от
3000
(Вт)
,
от
2200
(Вт)
,
от
1500
(Вт)
,
от
1200
(Вт)
,
от
1000
(Вт)
,
от
1500000
(Вт)
,
от
150000
(Вт)
,
от
120000
(Вт)
,
от
100000
(Вт)
;
Верхняя граница диапазона входного напряжения (фаза-нейтраль) без перехода в режим работы от батарей:
от
310
(В)
,
от
315
(В)
,
от
320
(В)
,
от
260
(В)
,
от
265
(В)
,
от
270
(В)
,
от
275
(В)
,
от
280
(В)
,
от
285
(В)
,
от
290
(В)
,
от
295
(В)
,
от
300
(В)
,
от
305
(В)
;
Возможность замены аккумуляторной батареи пользователем:
Да
,
Нет
.
Перегрузка силовых трансформаторов важный параметр, необходимый как при проектировании, так и при эксплуатации электрических станций и подстанций
В статье представлены действующие нормативные документы, на основании которых определяются допустимые перегрузки трансформаторов
1. Допустимая длительная перегрузка силовых трансформаторов по ПТЭ
Тип трансформаторов | Длительно допустимая перегрузка* |
Масляные | 5%** [п. 5.3.14 ПТЭ ЭСС], [п. 2.1.20 ПТЭП] |
С жидким негорючим диэлектриком | 5%** [п. 2.1.20 ПТЭП] |
Сухие*** | устанавливаются заводской инструкцией [5.3.15 ПТЭ ЭСС] |
Примечания:
* — под длительно допустимой понимается сколь угодно долгая продолжительность перегрузки;
** — указана перегрузка в % номинального тока ответвления (если напряжение на ответвлении не превышает номинального)
*** — на практике сухие трансформаторы стараются не перегружать;
Кроме того, для трансформаторов в зависимости от режима работы допускаются систематические перегрузки, значение и длительность которых регламентируются типовой инструкцией по эксплуатации трансформаторов и инструкциями заводов-изготовителей [п. 5.3.14 ПТЭ ЭСС], [п. 2.1.20 ПТЭП].
2. Аварийная кратковременная перегрузка трансформатора по ПТЭ
В аварийных режимах допускается кратковременная перегрузка трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды в следующих пределах [5.3.15 ПТЭ ЭСиС] , [п. 2.1.20 ПТЭ П]:
Масляные трансформаторы | |||||
Перегрузка по току, % | 30 | 45 | 60 | 75 | 100 |
Длительность перегрузки, мин | 120 | 80 | 45 | 20 | 10 |
Сухие трансформаторы | |||||
Перегрузка по току, % | 20 | 30 | 40 | 50 | 60 |
Длительность перегрузки, мин | 60 | 45 | 32 | 18 | 5 |
3. Аварийная кратковременная перегрузка трансформатора по Приказу Минэнерго РФ N250 от 06.05.2014 г.
В соответствии с Приложением №1 «Методических указаний по определению степени загрузки вводимых после строительства объектов электросетевого хозяйства»(утв. Приказом Минэнерго РФ N250 от 06.05.2014 г):
Допустимые аварийные перегрузки для силовых (авто-) трансформаторов различной системы охлаждения в зависимости от температуры (°С) охлаждающей среды (в долях от номинального тока)
Температура (°С) охлаждающей среды | Система охлаждения |
|
М, Д | ДЦ, Ц | |
Для трансформаторов со сроком эксплуатации менее 30 лет | ||
-20°С и ниже | 1,5 | 1,5 |
-10°С | 1,5 | 1,4 |
0°С | 1,4 | 1,4 |
10°С | 1,3 | 1,3 |
20°С | 1,3 | 1,2 |
30°С | 1,2 | 1,2 |
40°С | 1,1 | 1,1 |
Для трансформаторов со сроком эксплуатации более 30 лет | ||
-20°С и ниже | 1,2 | |
-10°С | 1,2 | |
0°С | 1,15 | |
10°С | 1,0 | |
20°С | 1,0 | |
30°С | 1,0 | |
40°С | 1,0 |
4. Аварийная кратковременная перегрузка трансформатора по ГОСТ 14209-97 (упрощенные таблицы)
Допустимые аварийные перегрузки без учета предшествующей нагрузки (по ГОСТ 14209-97, Таблица Н.1)
Продолж. перегрузки в течение суток, ч | Перегрузка в долях номинального тока, в зависимости от температуры охлаждающей среды во время перегрузки | |||
-25°С | ONAN | ON | OF | OD |
0,5 | 2,0 | 1,8 | 1,6 | 1,4 |
1,0 | 1,9 | 1,7 | 1,6 | 1,4 |
2,0 | 1,9 | 1,7 | 1,5 | 1,4 |
4,0 | 1,8 | 1,6 | 1,5 | 1,4 |
8,0 | 1,7 | 1,6 | 1,5 | 1,4 |
24,0 | 1,7 | 1,6 | 1,5 | 1,4 |
-20° C | ONAN | ON | OF | OD |
0,5 | 1,9 | 1,7 | 1,6 | 1,5 |
1,0 | 1,9 | 1,6 | 1,5 | 1,4 |
2,0 | 1,8 | 1,6 | 1,5 | 1,4 |
4,0 | 1,7 | 1,6 | 1,5 | 1,4 |
8,0 | 1,7 | 1,5 | 1,5 | 1,4 |
24,0 | 1,6 | 1,5 | 1,5 | 1,4 |
-10° C | ONAN | ON | OF | OD |
0,5 | 1,7 | 1,6 | 1,5 | 1,4 |
1,0 | 1,7 | 1,5 | 1,5 | 1,4 |
2,0 | 1,7 | 1,5 | 1,5 | 1,3 |
4,0 | 1,6 | 1,5 | 1,4 | 1,3 |
8,0 | 1,6 | 1,5 | 1,4 | 1,3 |
24,0 | 1,6 | 1,5 | 1,4 | 1,3 |
0° C | ONAN | ON | OF | OD |
0,5 | 1,7 | 1,5 | 1,4 | 1,3 |
1,0 | 1,7 | 1,5 | 1,4 | 1,3 |
2,0 | 1,6 | 1,5 | 1,4 | 1,3 |
4,0 | 1,6 | 1,4 | 1,4 | 1,3 |
8,0 | 1,6 | 1,4 | 1,4 | 1,3 |
24,0 | 1,5 | 1,4 | 1,4 | 1,3 |
10° C | ONAN | ON | OF | OD |
0,5 | 1,7 | 1,4 | 1,4 | 1,3 |
1,0 | 1,6 | 1,4 | 1,4 | 1,3 |
2,0 | 1,5 | 1,4 | 1,3 | 1,2 |
4,0 | 1,5 | 1,3 | 1,3 | 1,2 |
8,0 | 1,5 | 1,3 | 1,3 | 1,2 |
24,0 | 1,5 | 1,3 | 1,3 | 1,2 |
20° C | ONAN | ON | OF | OD |
0,5 | 1,5 | 1,3 | 1,3 | 1,2 |
1,0 | 1,4 | 1,3 | 1,3 | 1,2 |
2,0 | 1,4 | 1,3 | 1,3 | 1,2 |
4,0 | 1,4 | 1,3 | 1,2 | 1,2 |
8,0 | 1,4 | 1.3 | 1,2 | 1,2 |
24,0 | 1,4 | 1,3 | 1,2 | 1,2 |
30° C | ONAN | ON | OF | OD |
0,5 | 1,4 | 1,2 | 1,2 | 1,2 |
1,0 | 1,3 | 1,2 | 1,2 | 1,2 |
2,0 | 1,3 | 1,2 | 1,2 | 1,2 |
4,0 | 1,3 | 1,2 | 1,2 | 1,1 |
8,0 | 1,3 | 1,2 | 1,2 | 1,1 |
24,0 | 1,3 | 1,2 | 1,2 | 1,1 |
40° C | ONAN | ON | OF | OD |
0,5 | 1,3 | 1,2 | 1,2 | 1,2 |
1,0 | 1,3 | 1,2 | 1,2 | 1,1 |
2,0 | 1,3 | 1,2 | 1,1 | 1,1 |
4,0 | 1,2 | 1,2 | 1,1 | 1,1 |
8,0 | 1,2 | 1,1 | 1,1 | 1,1 |
24,0 | 1,2 | 1,1 | 1,1 | 1,1 |
Допустимые аварийные перегрузки без учета предшествующей нагрузки, не превышающей 0,8 номинального тока (по ГОСТ 14209-97, Таблица Н.2)
Продолж. перегрузки в течение суток, ч | Перегрузка в долях номинального тока, в зависимости от температуры охлаждающей среды во время перегрузки | |||
-25°С | ONAN | ON | OF | OD |
0,5 | 2,0 | 2,0 | 1,9 | 1,7 |
1,0 | 2,0 | 2,0 | 1,7 | 1,6 |
2,0 | 2,0 | 1,9 | 1,7 | 1,5 |
4,0 | 1,9 | 1,7 | 1,6 | 1,5 |
8,0 | 1,7 | 1,6 | 1,6 | 1,4 |
24,0 | 1,7 | 1,5 | 1,6 | 1,4 |
-20° C | ONAN | ON | OF | OD |
0,5 | 2,0 | 2,0 | 1,8 | 1,6 |
1,0 | 2,0 | 2,0 | 1,7 | 1,5 |
2,0 | 2,0 | 1,9 | 1,6 | 1,4 |
4,0 | 1,8 | 1,6 | 1,5 | 1,4 |
8,0 | 1,7 | 1,5 | 1,5 | 1,4 |
24,0 | 1,7 | 1,5 | 1,5 | 1,4 |
-10° C | ONAN | ON | OF | OD |
0,5 | 2,0 | 2,0 | 1,7 | 1,6 |
1,0 | 2,0 | 1,9 | 1,6 | 1,5 |
2,0 | 1,9 | 1,8 | 1,5 | 1,4 |
4,0 | 1,7 | 1,6 | 1,5 | 1,3 |
8,0 | 1,6 | 1,5 | 1,4 | 1,3- |
24,0 | 1,5 | 1,5 | 1,4 | 1,3 |
0° C | ONAN | ON | OF | OD |
0,5 | 2,0 | 2,0 | 1,7OF | 1,5 |
1,0 | 2,0 | 1,8 | 1,6 | 1,4 |
2,0 | 1,9 | 1,7 | 1,5 | 1,3 |
4,0 | 1,7 | 1,5 | 1,4 | 1,3 |
8,0 | 1,6 | 1,4 | 1,4 | 1,3 |
24,0 | 1,5 | 1,4 | 1,4 | 1,3 |
10° C | ONAN | ON | OF | OD |
0,5 | 2,0 | 1,9 | 1,6 | 1,5 |
1,0 | 1,9 | 1,7 | 1,5 | 1,4 |
2,0 | 1,8 | 1,5 | 1,4 | 1,3 |
4,0 | 1,6 | 1,4 | 1,3 | 1,2 |
8,0 | 1,5 | 1,3 | 1,3 | 1,2 |
24,0 | 1,5 | 1,3 | 1,3 | 1,2 |
20° C | ONAN | ON | OF | OD |
0,5 | 2,0 | 1,8 | 1,5 | 1,4 |
1,0 | 1,8 | 1,6 | 1,4 | 1,3 |
2,0 | 1,7 | 1,5 | 1,3 | 1,2 |
4,0 | 1,5 | 1,3 | 1,3 | 1 ,2 |
8,0 | 1,4 | 1,3 | 1,3 | 1,2 |
24,0 | 1,4 | 1,3 | 1,3 | 1,2 |
30° C | ONAN | ON | OF | OD |
0,5 | 1,9 | 1,7 | 1,4 | 1,3 |
1,0 | 1,8 | 1,5 | 1,3 | 1,3 |
2,0 | 1,6 | 1,4 | 1,2 | 1.2 |
4,0 | 1,4 | 1,3 | 1,2 | 1,1 |
8,0 | 1,3 | 1,2 | 1,2 | 1,1 |
24,0 | 1,2 | 1,2 | 1,2 | 1,1 |
40° C | ONAN | ON | OF | OD |
0,5 | 1,8 | 1,6 | 1,3 | 1,3 |
1,0 | 1,7 | 1,4 | 1,3 | 1,2 |
2,0 | 1,5 | 1,3 | 1,2 | 1,1 |
4,0 | 1,3 | 1,2 | 1,1 | 1,1 |
8,0 | 1,2 | 1,1 | 1,1 | 1,1 |
24,0 | 1,2 | 1,1 | 1,1 | 1,1 |
Система охлаждения трансформаторов
Обозначение | Наименование |
Д (ONAF) | масляное охлаждение с дутьем и с естественной циркуляцией масла |
М (ONAN) | естественное масляное охлаждение |
ДЦ (OFAF) | масляное охлаждение с дутьем и с принудительной циркуляцией масла |
Ц (OFWF) | масляно-водяное охлаждение с принудительной циркуляцией масла |
ON | обозначает виды охлаждения ONAN или ONAF |
OF | обозначает виды охлаждения OFAF или OFWF |
Перечень НТД по вопросу перегрузки трансформаторов
— «Правила технической эксплуатации электрических станций и сетей Российской Федерации», утв. приказом Министерства энергетики РФ от 19 июня 2003 г. N 229 (ПТЭ ЭСС)
— «Правила технической эксплуатации электроустановок потребителей», утв. приказом Министерства энергетики РФ от 13 января 2003 г. N 6 (ПТЭ П)
— «Методические указания по определению степени загрузки вводимых после строительства объектов электросетевого хозяйства, а также по определению и применению коэффициентов совмещения максимума потребления электрической энергии (мощности) при определении степени загрузки таких объектов», утв. приказом Министерства энергетики РФ от 6 мая 2014 г. N 250.
— ГОСТ 14209-97 «Руководство по нагрузке силовых масляных трансформаторов», введен в действие в качестве Государственного стандарта Российской Федерации с 01.01.2002
— СТО 56947007-29.180.01.116-2012 «Инструкция по эксплуатации трансформаторов», утв. приказом ОАО «ФСК ЕЭС» от 02.03.2012 № 113
— Проект норматива «Требования к перегрузочной способности трансформаторов и автотрансформаторов, установленных на объектах электроэнергетики, и ее поддержанию» (подготовлен Минэнерго России 23.07.2018)
Товар/услуги | Код КТРУ | Ед. изм. | Кол-во | Цена за ед. | Стоимость |
---|---|---|---|---|---|
Источник бесперебойного питания Количество выходных розеток Schuko ≥ 4 шт, Количество выходных разъемов питания без батарейной поддержки ≥ 4 шт, Масса ≤ 50 кг, Глубина ≤ 400 мм, Ширина ≤ 450 мм, Высота ≤ 450 мм, Класс защиты IP21, Интерфейс связи Сухие контакты RS232 USB, Уровень шума ≤ 50 ДЕЦИБЕЛ, Максимальная относительная влажность окружающей среды ≥ 90 %, Максимальная температура окружающей среды ≥ +30 [0*]С, Минимальная температура окружающей среды ≤ +10 [0*]С, Выходной коэффициент мощности ≥ 0.9, Входной коэффициент мощности ≥ 0.99, Коэффициент нелинейных искажений напряжения на выходе (THDv) ≤ 5 %, Коэффициент нелинейных искажений тока на входе (THDi) ≤ 5 %, Допустимое время работы при перегрузке 150 % ≥ 0.5 мин, Допустимое время работы при перегрузке 125% ≥ 1 мин, Допустимое время работы при перегрузке 110% ≥ 10 мин, Понижение входного напряжения без переключения на использование АКБ ≤ 180 В, Минимально-допустимое номинальное напряжение аккумуляторных батарей 12 В, Коэффициент полезного действия источника бесперебойного питания ≥ 90 %, Активная мощность ≥ 2200 Вт, Номинальная мощность ≥ 2200 Вт, Сейсмостойкое исполнение Нет, Наличие функции параллельной работы Нет, Наличие дисплея Да, Тип используемых батарей Свинцово-кислотные герметичные необслуживаемые, Наличие дополнительных функций Цветовая индикация состояния источника бесперебойного питания (меняющийся экран), Форм-фактор источника бесперебойного питания Стоечный, Возможность подключения внешних батарей Нет, Тип С двойным преобразованием (on-line), Полная мощность ≥ 3000 В.А, Режим нагрузочного самотестирования источника бесперебойного питания без подключения нагрузки Да, Заряд батарей в режиме повышенной энергоэффективности Нет, Наличие функции холодного старта Нет, Параметры аккумуляторной батареи, измеряемые системой мониторинга Напряжение, Расположение батарей Внутри источника бесперебойного питания, Номинальная выходная частота 50 Гц, Номинальная входная частота 50 Гц, Номинальное выходное напряжение ≥ 220 и < 240 В, Номинальное входное напряжение ≥ 220 и < 240 В, Подключение вывода 1Ph+N+PE, Подключение ввода 1Ph+N+PE, Фазность источника бесперебойного питания (вход:выход) 1:1, Поддержка технологии plug-n-play при использовании модульных батарей Нет, Наличие расширенного мониторинга при использовании модульных батарей Нет, Встроенное N+1 резервирование (на уровне модулей) для модульногоисточника бесперебойного питания Нет, Пространство для обслуживания источника бесперебойного питания Спереди и сзади, Наличие защиты источника бесперебойного питания от пыли Нет, Наличие защиты источника бесперебойного питания от протечек воды сверху Нет, Наличие сетевой карты в составе источника бес | 26.20.40.110 | Штука | 1 | 79824.33 | 79824.33 |
Источник бесперебойного питания Коррекция помех в режиме повышенной энергоэффективности Да, Параметры аккумуляторной батареи, измеряемые системой мониторинга Напряжение, Номинальная выходная частота 50 Гц, Номинальная входная частота 50 Гц, Номинальное выходное напряжение ≥ 220 и < 240 В, Номинальное входное напряжение ≥ 380 и < 415 В, Подключение вывода 1Ph+N+PE, Подключение ввода 3Ph+N+PE, Фазность источника бесперебойного питания (вход:выход) 3:1, Пространство для обслуживания источника бесперебойного питания Спереди и сзади, Наличие защиты источника бесперебойного питания от пыли Нет, Наличие защиты источника бесперебойного питания от протечек воды сверху Нет, Наличие сетевой карты в составе источника бесперебойного питания Нет, Нижняя граница диапазона входного напряжения (фаза-нейтраль) без перехода в режим работы от батарей ≤ 190 В, Масса ≤ 200 кг, Глубина ≤ 750 мм, Ширина ≤ 350 мм, Высота ≤ 850 мм ≤ 1400 мм, Класс защиты IP20, Интерфейс связи RS232, Уровень шума ≤ 60 ДЕЦИБЕЛ, Максимальная относительная влажность окружающей среды ≥ 95 %, Максимальная температура окружающей среды ≥ +30 [0*]С, Минимальная температура окружающей среды ≤ +10 [0*]С, Выходной коэффициент мощности ≥ 0.9, Входной коэффициент мощности ≥ 0.99, Коэффициент нелинейных искажений тока на входе (THDi) ≤ 0.5 %, Допустимое время работы при перегрузке 125% ≥ 1 мин, Допустимое время работы при перегрузке 110% ≥ 10 мин ≥ 5 мин, Понижение входного напряжения без переключения на использование АКБ ≤ 340 В, Максимально-допустимое номинальное напряжение аккумуляторных батарей 12 В, Минимально-допустимое номинальное напряжение аккумуляторных батарей 12 В, Коэффициент полезного действия источника бесперебойного питания ≥ 93 %, Активная мощность ≥ 10000 Вт, Номинальная мощность ≥ 10000 Вт, Сейсмостойкое исполнение Нет, Наличие клеммного выхода Да, Наличие дисплея Да, Тип используемых батарей Свинцово-кислотные герметичные необслуживаемые, Наличие дополнительных функций Цветовая индикация состояния источника бесперебойного питания (меняющийся экран), Форм-фактор источника бесперебойного питания Отдельно стоящий (напольный), Полная мощность ≥ 10000 В.А | 26.20.40.110 | Штука | 1 | 810774.67 | 810774.67 |
Источник бесперебойного питания Режим нагрузочного самотестирования источника бесперебойного питания без подключения нагрузки Да, Нулевое (0мс) время переключения из режима повышенной энергоэффективности Нет, Резервирование при параллельной работе Нет, Параметры аккумуляторной батареи, измеряемые системой мониторинга Емкость, Модульная архитектура батарей источника бесперебойного питания Да, Тип исполнения батарейных кабинетов Встроенные в источник бесперебойного питания, Расположение батарей Внутри источника бесперебойного питания, Номинальная выходная частота 50 Гц, Номинальная входная частота 50 Гц, Номинальное входное напряжение ≥ 220 и < 240 В, Подключение ввода 1Ph+N+PE, Фазность источника бесперебойного питания (вход:выход) 1:1, Поддержка технологии plug-n-play при использовании модульных батарей Да, Наличие расширенного мониторинга при использовании модульных батарей Да, Пространство для обслуживания источника бесперебойного питания Спереди и сзади, Наличие защиты источника бесперебойного питания от пыли Да, Наличие защиты источника бесперебойного питания от протечек воды сверху Нет, Наличие сетевой карты в составе источника бесперебойного питания Да, Управление и мониторинг ИБП Возможность удалённого мониторинга ИБП через сетевую карту с интерфейсом Ethernet 1000Mbps Поддержка протокола SNMP Локальное хранение журнала события и логов с возможностью складирования их на другом ресурсе, Физические размеры высоты источника бесперебойного питания при установке в телекоммуникационную стойку, U ≥ 5 ≥ 6, Верхняя граница диапазона входного напряжения (фаза-нейтраль) без перехода в режим работы от батарей ≥ 285 В, Нижняя граница диапазона входного напряжения (фаза-нейтраль) без перехода в режим работы от батарей ≤ 170 В, Количество выходных разъемов питания без батарейной поддержки ≥ 2 шт, Расчетная мощность нагрузки относительно номинальной в кВт для подбора времени автономной работы 80 %, Масса ≤ 50 кг, Глубина ≤ 500 мм, Ширина ≤ 500 мм, Высота ≤ 150 мм, Класс защиты IP23, Уровень шума ≤ 40 ДЕЦИБЕЛ, Максимальная относительная влажность окружающей среды ≥ 70 %, Максимальная температура окружающей среды ≥ +40 [0*]С, Минимальная температура окружающей среды ≤ +10 [0*]С, Коэффициент нелинейных искажений напряжения на выходе (THDv) ≤ 5 %, Допустимое время работы при перегрузке 110% ≥ 20 мин, Повышение входного напряжения без переключения на использование АКБ ≥ 260 В, Понижение входного напряжения без переключения на использование АКБ ≤ 180 В, Максимально-допустимое номинальное напряжение аккумуляторных батарей 12 В, Минимально-допустимое номинальное напряжение аккумуляторных батарей 48 В, Коэффициент полезного действия источника бесперебойного питания ≥ 90 | 26.20.40.110 | Штука | 10 | 326466 | 3264660 |
Средства связи, выполняющие функцию систем коммутации | 26.30.11.110 | Штука | 10 | 211024.67 | 2110246.7 |
Принтеры | 26.20.16.120 | Штука | 1 | 36815.33 | 36815.33 |
Содержание
- ПУЭ. Раздел 1. Общие правила
- Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны
- Область применения
- Выбор сечений проводников по нагреву
- Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией
- Допустимые длительные токи для кабелей с бумажной пропитанной изоляцией
- Допустимые длительные токи для неизолированных проводов и шин
- Выбор сечения проводников по экономической плотности тока
- Проверка проводников по условиям короны и радиопомех
ПУЭ. Раздел 1. Общие правила
Глава 1.3. Выбор проводников по нагреву, экономической плотности тока и по условиям короны
Область применения
1.3.1. Настоящая глава Правил распространяется на выбор сечений электрических проводников (неизолированные и изолированные провода, кабели и шины) по нагреву, экономической плотности тока и по условиям короны. Если сечение проводника, определенное по этим условиям, получается меньше сечения, требуемого по другим условиям (термическая и электродинамическая стойкость при токах КЗ, потери и отклонения напряжения, механическая прочность, защита от перегрузки), то должно приниматься наибольшее сечение, требуемое этими условиями.
Выбор сечений проводников по нагреву
1.3.2. Проводники любого назначения должны удовлетворять требованиям в отношении предельно допустимого нагрева с учетом не только нормальных, но и послеаварийных режимов, а также режимов в период ремонта и возможных неравномерностей распределения токов между линиями, секциями шин и т. п. При проверке на нагрев принимается получасовой максимум тока, наибольший из средних получасовых токов данного элемента сети.
1.3.3. При повторно-кратковременном и кратковременном режимах работы электроприемников (с общей длительностью цикла до 10 мин и длительностью рабочего периода не более 4 мин) в качестве расчетного тока для проверки сечения проводников по нагреву следует принимать ток, приведенный к длительному режиму. При этом:
- для медных проводников сечением до 6 мм 2 , а для алюминиевых проводников до 10 мм 2 ток принимается как для установок с длительным режимом работы;
- для медных проводников сечением более 6 мм 2 , а для алюминиевых проводников более 10 мм 2 ток определяется умножением допустимого длительного тока на коэффициент , где ТПЕ — выраженная в относительных единицах длительность рабочего периода (продолжительность включения по отношению к продолжительности цикла).
1.3.4. Для кратковременного режима работы с длительностью включения не более 4 мин и перерывами между включениями, достаточными для охлаждения проводников до температуры окружающей среды, наибольшие допустимые токи следует определять по нормам повторно — кратковременного режима (см. 1.3.3). При длительности включения более 4 мин, а также при перерывах недостаточной длительности между включениями наибольшие допустимые токи следует определять как для установок с длительным режимом работы.
1.3.5. Для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией, несущих нагрузки меньше номинальных, может допускаться кратковременная перегрузка, указанная в табл. 1.3.1.
1.3.6. На период ликвидации послеаварийного режима для кабелей с полиэтиленовой изоляцией допускается перегрузка до 10%, а для кабелей с поливинилхлоридной изоляцией до 15% номинальной на время максимумов нагрузки продолжительностью не более 6 ч в сутки в течение 5 сут., если нагрузка в остальные периоды времени этих суток не превышает номинальной.
На период ликвидации послеаварийного режима для кабелей напряжением до 10 кВ с бумажной изоляцией допускаются перегрузки в течение 5 сут. в пределах, указанных в табл. 1.3.2.
Таблица 1.3.1. Допустимая кратковременная перегрузка для кабелей напряжением до 10 кВ с бумажной пропитанной изоляцией
Коэффициент предварительной нагрузки | Вид прокладки | Допустимая перегрузка по отношению к номинальной в течение, ч | ||
---|---|---|---|---|
0,5 | 1,0 | 3,0 | ||
0,6 | В земле | 1,35 | 1,30 | 1,15 |
В воздухе | 1,25 | 1,15 | 1,10 | |
В трубах (в земле) | 1,20 | 1,0 | 1,0 | |
0,8 | В земле | 1,20 | 1,15 | 1,10 |
В воздухе | 1,15 | 1,10 | 1,05 | |
В трубах (в земле) | 1,10 | 1,05 | 1,00 |
Таблица 1.3.2. Допустимая на период ликвидации послеаварийного режима перегрузка для кабелей напряжением до 10 кВ с бумажной изоляцией
Коэффициент предварительной нагрузки | Вид прокладки | Допустимая перегрузка по отношению к номинальной при длительности максимума, ч | ||
---|---|---|---|---|
1 | 3 | 6 | ||
0,6 | В земле | 1,5 | 1,35 | 1,25 |
В воздухе | 1,35 | 1,25 | 1,25 | |
В трубах (в земле) | 1,30 | 1,20 | 1,15 | |
0,8 | В земле | 1,35 | 1,25 | 1,20 |
В воздухе | 1,30 | 1,25 | 1,25 | |
В трубах (в земле) | 1,20 | 1,15 | 1,10 |
Для кабельных линий, находящихся в эксплуатации более 15 лет, перегрузки должны быть понижены на 10%.
Перегрузка кабельных линий напряжением 20-35 кВ не допускается.
1.3.7. Требования к нормальным нагрузкам и послеаварийным перегрузкам относятся к кабелям и установленным на них соединительным и концевым муфтам и концевым заделкам.
1.3.8. Нулевые рабочие проводники в четырехпроводной системе трехфазного тока должны иметь проводимость не менее 50% проводимости фазных проводников; в необходимых случаях она должна быть увеличена до 100% проводимости фазных проводников.
1.3.9. При определении допустимых длительных токов для кабелей, неизолированных и изолированных проводов и шин, а также для жестких и гибких токопроводов, проложенных в среде, температура которой существенно отличается от приведенной в 1.3.12—1.3.15 и 1.3.22, следует применять коэффициенты, приведенные в табл. 1.3.3.
Таблица 1.3.3. Поправочные коэффициенты на токи для кабелей, неизолированных и изолированных проводов и шин в зависимости от температуры земли и воздуха
Условная температура среды, °С | Нормированная температура жил, °С | Поправочные коэффициенты на токи при расчетной температуре среды, °С | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-5 и ниже | 0 | +5 | +10 | +15 | +20 | +25 | +30 | +35 | +40 | +45 | +50 | ||
15 | 80 | 1,14 | 1,11 | 1,08 | 1,04 | 1,00 | 0,96 | 0,92 | 0,88 | 0,83 | 0,78 | 0,73 | 0,68 |
25 | 80 | 1,24 | 1,20 | 1,17 | 1,13 | 1,09 | 1,04 | 1,00 | 0,95 | 0,90 | 0,85 | 0,80 | 0,74 |
25 | 70 | 1,29 | 1,24 | 1,20 | 1,15 | 1,11 | 1,05 | 1,00 | 0,94 | 0,88 | 0,81 | 0,74 | 0,67 |
15 | 65 | 1,18 | 1,14 | 1,10 | 1,05 | 1,00 | 0,95 | 0,89 | 0,84 | 0,77 | 0,71 | 0,63 | 0,55 |
25 | 65 | 1,32 | 1,27 | 1,22 | 1,17 | 1,12 | 1,06 | 1,00 | 0,94 | 0,87 | 0,79 | 0,71 | 0,61 |
15 | 60 | 1,20 | 1,15 | 1,12 | 1,06 | 1,00 | 0,94 | 0,88 | 0,82 | 0,75 | 0,67 | 0,57 | 0,47 |
25 | 60 | 1,36 | 1,31 | 1,25 | 1,20 | 1,13 | 1,07 | 1,00 | 0,93 | 0,85 | 0,76 | 0,66 | 0,54 |
15 | 55 | 1,22 | 1,17 | 1,12 | 1,07 | 1,00 | 0,93 | 0,86 | 0,79 | 0,71 | 0,61 | 0,50 | 0,36 |
25 | 55 | 1,41 | 1,35 | 1,29 | 1,23 | 1,15 | 1,08 | 1,00 | 0,91 | 0,82 | 0,71 | 0,58 | 0,41 |
15 | 50 | 1,25 | 1,20 | 1,14 | 1,07 | 1,00 | 0,93 | 0,84 | 0,76 | 0,66 | 0,54 | 0,37 | – |
25 | 50 | 1,48 | 1,41 | 1,34 | 1,26 | 1,18 | 1,09 | 1,00 | 0,89 | 0,78 | 0,63 | 0,45 | – |
Допустимые длительные токи для проводов, шнуров и кабелей с резиновой или пластмассовой изоляцией
1.3.10. Допустимые длительные токи для проводов с резиновой или поливинилхлоридной изоляцией, шнуров с резиновой изоляцией и кабелей с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках приведены в табл. 1.3.4—1.3.11. Они приняты для температур: жил + 65, окружающего воздуха + 25 и земли + 15°С.
При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются.
Данные, содержащиеся в табл. 1.3.4 и 1.3.5, следует применять независимо от количества труб и места их прокладки (в воздухе, перекрытиях, фундаментах).
Допустимые длительные токи для проводов и кабелей, проложенных в коробах, а также в лотках пучками, должны приниматься: для проводов — по табл. 1.3.4 и 1.3.5 как для проводов, проложенных в трубах, для кабелей — по табл. 1.3.6—1.3.8 как для кабелей, проложенных в воздухе. При количестве одновременно нагруженных проводов более четырех, проложенных в трубах, коробах, а также в лотках пучками, токи для проводов должны приниматься по табл. 1.3.4 и 1.3.5 как для проводов, проложенных открыто (в воздухе), с введением снижающих коэффициентов 0,68 для 5 и 6; 0,63 для 7-9 и 0,6 для 10-12 проводников.
Для проводов вторичных цепей снижающие коэффициенты не вводятся.
Таблица 1.3.4. Допустимый длительный ток для проводов и шнуров с резиновой и поливинилхлоридной изоляцией с медными жилами
Сечение токопроводящей жилы, мм 2 | Ток, А, для проводов, проложенных | |||||
---|---|---|---|---|---|---|
открыто | в одной трубе | |||||
двух-, одножильных | трех-, одножильных | четырех-, одножильных | одного-, двухжильного | одного-, трехжильного | ||
0,5 | 11 | – | – | – | – | – |
0,75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | – | – | – |
185 | 510 | – | – | – | – | – |
240 | 605 | – | – | – | – | – |
300 | 695 | – | – | – | – | – |
400 | 830 | – | – | – | – | – |
Таблица 1.3.5. Допустимый длительный ток для проводов с резиновой и поливинилхлоридной изоляцией с алюминиевыми жилами
Сечение токопроводящей жилы, мм 2 | Ток, А, для проводов, проложенных | |||||
---|---|---|---|---|---|---|
открыто | в одной трубе | |||||
двух-, одножильных | трех-, одножильных | четырех-, одножильных | одного-, двухжильного | одного-, трехжильного | ||
2 | 21 | 19 | 18 | 15 | 17 | 14 |
2,5 | 24 | 20 | 19 | 19 | 19 | 16 |
3 | 27 | 24 | 22 | 21 | 22 | 18 |
4 | 32 | 28 | 28 | 23 | 25 | 21 |
5 | 36 | 32 | 30 | 27 | 28 | 24 |
6 | 39 | 36 | 32 | 30 | 31 | 26 |
8 | 46 | 43 | 40 | 37 | 38 | 32 |
10 | 60 | 50 | 47 | 39 | 42 | 38 |
16 | 75 | 60 | 60 | 55 | 60 | 55 |
25 | 105 | 85 | 80 | 70 | 75 | 65 |
35 | 130 | 100 | 95 | 85 | 95 | 75 |
50 | 165 | 140 | 130 | 120 | 125 | 105 |
70 | 210 | 175 | 165 | 140 | 150 | 135 |
95 | 255 | 215 | 200 | 175 | 190 | 165 |
120 | 295 | 245 | 220 | 200 | 230 | 190 |
150 | 340 | 275 | 255 | – | – | – |
185 | 390 | – | – | – | – | – |
240 | 465 | – | – | – | – | – |
300 | 535 | – | – | – | – | – |
400 | 645 | – | – | – | – | – |
Таблица 1.3.6. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и кабелей с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных
Сечение токопроводящей жилы, мм 2 | Ток *, А, для проводов и кабелей | ||||
---|---|---|---|---|---|
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
1,5 | 23 | 19 | 33 | 19 | 27 |
2,5 | 30 | 27 | 44 | 25 | 38 |
4 | 41 | 38 | 55 | 35 | 49 |
6 | 50 | 50 | 70 | 42 | 60 |
10 | 80 | 70 | 105 | 55 | 90 |
16 | 100 | 90 | 135 | 75 | 115 |
25 | 140 | 115 | 175 | 95 | 150 |
35 | 170 | 140 | 210 | 120 | 180 |
50 | 215 | 175 | 265 | 145 | 225 |
70 | 270 | 215 | 320 | 180 | 275 |
95 | 325 | 260 | 385 | 220 | 330 |
120 | 385 | 300 | 445 | 260 | 385 |
150 | 440 | 350 | 505 | 305 | 435 |
185 | 510 | 405 | 570 | 350 | 500 |
240 | 605 | — | — | — | — |
* Токи относятся к проводам и кабелям как с нулевой жилой, так и без нее.
Таблица 1.3.7. Допустимый длительный ток для кабелей с алюминиевыми жилами с резиновой или пластмассовой изоляцией в свинцовой, поливинилхлоридной и резиновой оболочках, бронированных и небронированных
Сечение токопроводящей жилы, мм² | Ток, А, для кабелей | ||||
---|---|---|---|---|---|
одножильных | двухжильных | трехжильных | |||
при прокладке | |||||
в воздухе | в воздухе | в земле | в воздухе | в земле | |
2,5 | 23 | 21 | 34 | 19 | 29 |
4 | 31 | 29 | 42 | 27 | 38 |
6 | 38 | 38 | 55 | 32 | 46 |
10 | 60 | 55 | 80 | 42 | 70 |
16 | 75 | 70 | 105 | 60 | 90 |
25 | 105 | 90 | 135 | 75 | 115 |
35 | 130 | 105 | 160 | 90 | 140 |
50 | 165 | 135 | 205 | 110 | 175 |
70 | 210 | 165 | 245 | 140 | 210 |
95 | 250 | 200 | 295 | 170 | 255 |
120 | 295 | 230 | 340 | 200 | 295 |
150 | 340 | 270 | 390 | 235 | 335 |
185 | 390 | 310 | 440 | 270 | 385 |
240 | 465 | – | – | – | – |
Примечание. Допустимые длительные токи для четырехжильных кабелей с пластмассовой изоляцией на напряжение до 1 кВ могут выбираться по табл. 1.3.7, как для трехжильных кабелей, но с коэффициентом 0,92.
Таблица 1.3.8. Допустимый длительный ток для переносных шланговых легких и средних шнуров, переносных шланговых тяжелых кабелей, шахтных гибких шланговых, прожекторных кабелей и переносных проводов с медными жилами
Сечение токопроводящей жилы, мм 2 | Ток *, А, для шнуров, проводов и кабелей | ||
---|---|---|---|
одножильных | двухжильных | трехжильных | |
0,5 | – | 12 | – |
0,75 | – | 16 | 14 |
1,0 | – | 18 | 16 |
1,5 | – | 23 | 20 |
2,5 | 40 | 33 | 28 |
4 | 50 | 43 | 36 |
6 | 65 | 55 | 45 |
10 | 90 | 75 | 60 |
16 | 120 | 95 | 80 |
25 | 160 | 125 | 105 |
35 | 190 | 150 | 130 |
50 | 235 | 185 | 160 |
70 | 290 | 235 | 200 |
* Токи относятся к шнурам, проводам и кабелям с нулевой жилой и без нее.
Таблица 1.3.9. Допустимый длительный ток для переносных шланговых с медными жилами с резиновой изоляцией кабелей для торфопредприятий
Сечение токопроводящей жилы, мм 2 | Ток *, А, для кабелей напряжением, кВ | ||
---|---|---|---|
0,5 | 3 | 6 | |
6 | 44 | 45 | 47 |
10 | 60 | 60 | 65 |
16 | 80 | 80 | 85 |
25 | 100 | 105 | 105 |
35 | 125 | 125 | 130 |
50 | 155 | 155 | 160 |
70 | 190 | 195 | – |
* Токи относятся к кабелям с нулевой жилой и без нее.
Таблица 1.3.10. Допустимый длительный ток для шланговых с медными жилами с резиновой изоляцией кабелей для передвижных электроприемников
Сечение токопроводящей жилы, мм 2 | Ток *, А, для кабелей напряжением, кВ | Сечение токопроводящей жилы, мм 2 | Ток *, А, для кабелей напряжением, кВ | ||
---|---|---|---|---|---|
3 | 6 | 3 | 6 | ||
16 | 85 | 90 | 70 | 215 | 220 |
25 | 115 | 120 | 95 | 260 | 265 |
35 | 140 | 145 | 120 | 305 | 310 |
50 | 175 | 180 | 150 | 345 | 350 |
* Токи относятся к кабелям с нулевой жилой и без нее.
Таблица 1.3.11. Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией для электрифицированного транспорта 1,3 и 4 кВ
Сечение токопроводящей жилы, мм 2 | Ток, А | Сечение токопроводящей жилы, мм 2 | Ток, А | Сечение токопроводящей жилы, мм 2 | Ток, А |
---|---|---|---|---|---|
1 | 20 | 16 | 115 | 120 | 390 |
1,5 | 25 | 25 | 150 | 150 | 445 |
2,5 | 40 | 35 | 185 | 185 | 505 |
4 | 50 | 50 | 230 | 240 | 590 |
6 | 65 | 70 | 285 | 300 | 670 |
10 | 90 | 95 | 340 | 350 | 745 |
Таблица 1.3.12. Снижающий коэффициент для проводов и кабелей, прокладываемых в коробах
Способ прокладки | Количество проложенных проводов и кабелей | Снижающий коэффициент для проводов, питающих | ||
---|---|---|---|---|
одножильных | многожильных | отдельные электроприемники с коэффициентом использования до 0,7 | группы электроприемников и отдельные приемники с коэффициентом использования более 0,7 | |
Многослойно и пучками | – | До 4 | 1,0 | – |
2 | 5-6 | 0,85 | – | |
3-9 | 7-9 | 0,75 | – | |
10-11 | 10-11 | 0,7 | – | |
12-14 | 12-14 | 0,65 | – | |
15-18 | 15-18 | 0,6 | – | |
Однослойно | 2-4 | 2-4 | – | 0,67 |
5 | 5 | – | 0,6 |
1.3.11. Допустимые длительные токи для проводов, проложенных в лотках, при однорядной прокладке (не в пучках) следует принимать, как для проводов, проложенных в воздухе.
Допустимые длительные токи для проводов и кабелей, прокладываемых в коробах, следует принимать по табл. 1.3.4—1.3.7 как для одиночных проводов и кабелей, проложенных открыто (в воздухе), с применением снижающих коэффициентов, указанных в табл. 1.3.12.
При выборе снижающих коэффициентов контрольные и резервные провода и кабели не учитываются.
Допустимые длительные токи для кабелей с бумажной пропитанной изоляцией
1.3.12. Допустимые длительные токи для кабелей напряжением до 35 кВ с изоляцией из пропитанной кабельной бумаги в свинцовой, алюминиевой или поливинилхлоридной оболочке приняты в соответствии с допустимыми температурами жил кабелей:
Номинальное напряжение, кВ | До 3 | 6 | 10 | 20 и 35 |
---|---|---|---|---|
Допустимая температура жилы кабеля, °С | +80 | +65 | +60 | +50 |
1.3.13. Для кабелей, проложенных в земле, допустимые длительные токи приведены в табл. 1.3.13, 1.3.16, 1.3.19—1.3.22. Они приняты из расчета прокладки в траншее на глубине 0,7-1,0 м не более одного кабеля при температуре земли + 15 °С и удельном сопротивлении земли 120 см•К/Вт.
Таблица 1.3.13. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в земле
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей | |||||
---|---|---|---|---|---|---|
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | – | 80 | 70 | – | – | – |
10 | 140 | 105 | 95 | 80 | – | 85 |
16 | 175 | 140 | 120 | 105 | 95 | 115 |
25 | 235 | 185 | 160 | 135 | 120 | 150 |
35 | 285 | 225 | 190 | 160 | 150 | 175 |
50 | 360 | 270 | 235 | 200 | 180 | 215 |
70 | 440 | 325 | 285 | 245 | 215 | 265 |
95 | 520 | 380 | 340 | 295 | 265 | 310 |
120 | 595 | 435 | 390 | 340 | 310 | 350 |
150 | 675 | 500 | 435 | 390 | 355 | 395 |
185 | 755 | – | 490 | 440 | 400 | 450 |
240 | 880 | – | 570 | 510 | 460 | – |
300 | 1000 | – | – | – | – | – |
400 | 1220 | – | – | – | – | – |
500 | 1400 | – | – | – | – | – |
625 | 1520 | – | – | – | – | – |
800 | 1700 | – | – | – | – | – |
Таблица 1.3.14. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей | |||
---|---|---|---|---|
трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||
16 | – | 135 | 120 | – |
25 | 210 | 170 | 150 | 195 |
35 | 250 | 205 | 180 | 230 |
50 | 305 | 255 | 220 | 285 |
70 | 375 | 310 | 275 | 350 |
95 | 440 | 375 | 340 | 410 |
120 | 505 | 430 | 395 | 470 |
150 | 565 | 500 | 450 | – |
185 | 615 | 545 | 510 | – |
240 | 715 | 625 | 585 | – |
Таблица 1.3.15. Допустимый длительный ток для кабелей с медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воздухе
Сечение токопро водящей жилы, мм 2 | Ток, А, для кабелей | |||||
---|---|---|---|---|---|---|
одножильных до 1кВ | двухжильных до 1кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | – | 55 | 45 | – | – | – |
10 | 95 | 75 | 60 | 55 | – | 60 |
16 | 120 | 95 | 80 | 65 | 60 | 80 |
25 | 160 | 130 | 105 | 90 | 85 | 100 |
35 | 200 | 150 | 125 | 110 | 105 | 120 |
50 | 245 | 185 | 155 | 145 | 135 | 145 |
70 | 305 | 225 | 200 | 175 | 165 | 185 |
95 | 360 | 275 | 245 | 215 | 200 | 215 |
120 | 415 | 320 | 285 | 250 | 240 | 260 |
150 | 470 | 375 | 330 | 290 | 270 | 300 |
185 | 525 | – | 375 | 325 | 305 | 340 |
240 | 610 | – | 430 | 375 | 350 | – |
300 | 720 | – | – | – | – | – |
400 | 880 | – | – | – | – | – |
500 | 1020 | – | – | – | – | – |
625 | 1180 | – | – | – | – | – |
800 | 1400 | – | – | – | – | – |
Таблица 1.3.16. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в земле
Сечение токопро водящей жилы, мм 2 | Ток, А, для кабелей | |||||
---|---|---|---|---|---|---|
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | — | 60 | 55 | – | – | – |
10 | 110 | 80 | 75 | 60 | – | 65 |
16 | 135 | 110 | 90 | 80 | 75 | 90 |
25 | 180 | 140 | 125 | 105 | 90 | 115 |
35 | 220 | 175 | 145 | 125 | 115 | 135 |
50 | 275 | 210 | 180 | 155 | 140 | 165 |
70 | 340 | 250 | 220 | 190 | 165 | 200 |
95 | 400 | 290 | 260 | 225 | 205 | 240 |
120 | 460 | 335 | 300 | 260 | 240 | 270 |
150 | 520 | 385 | 335 | 300 | 275 | 305 |
185 | 580 | – | 380 | 340 | 310 | 345 |
240 | 675 | – | 440 | 390 | 355 | – |
300 | 770 | – | – | – | – | – |
400 | 940 | – | – | – | – | – |
500 | 1080 | – | – | – | – | – |
625 | 1170 | – | – | – | – | – |
800 | 1310 | – | – | – | – | – |
Таблица 1.3.17. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, прокладываемых в воде
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей | |||
---|---|---|---|---|
трехжильных напряжением, кВ | четырех жильных до 1 кВ | |||
до 3 | 6 | 10 | ||
16 | – | 105 | 90 | – |
25 | 160 | 130 | 115 | 150 |
35 | 190 | 160 | 140 | 175 |
50 | 235 | 195 | 170 | 220 |
70 | 290 | 240 | 210 | 270 |
95 | 340 | 290 | 260 | 315 |
120 | 390 | 330 | 305 | 360 |
150 | 435 | 385 | 345 | – |
185 | 475 | 420 | 390 | – |
240 | 550 | 480 | 450 | – |
Таблица 1.3.18. Допустимый длительный ток для кабелей с алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, прокладываемых в воздухе
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей | |||||
---|---|---|---|---|---|---|
одножильных до 1 кВ | двухжильных до 1 кВ | трехжильных напряжением, кВ | четырехжильных до 1 кВ | |||
до 3 | 6 | 10 | ||||
6 | – | 42 | 35 | – | – | – |
10 | 75 | 55 | 46 | 42 | – | 45 |
16 | 90 | 75 | 60 | 50 | 46 | 60 |
25 | 125 | 100 | 80 | 70 | 65 | 75 |
35 | 155 | 115 | 95 | 85 | 80 | 95 |
50 | 190 | 140 | 120 | 110 | 105 | 110 |
70 | 235 | 175 | 155 | 135 | 130 | 140 |
95 | 275 | 210 | 190 | 165 | 155 | 165 |
120 | 320 | 245 | 220 | 190 | 185 | 200 |
150 | 360 | 290 | 255 | 225 | 210 | 230 |
185 | 405 | – | 290 | 250 | 235 | 260 |
240 | 470 | – | 330 | 290 | 270 | – |
300 | 555 | – | – | – | – | – |
400 | 675 | – | – | – | – | – |
500 | 785 | – | – | – | – | – |
625 | 910 | – | – | – | – | – |
800 | 1080 | – | – | – | – | – |
Таблица 1.3.19. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с медными жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей проложенных | Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей проложенных | ||
---|---|---|---|---|---|
в земле | в воздухе | в земле | в воздухе | ||
16 | 90 | 65 | 70 | 220 | 170 |
25 | 120 | 90 | 95 | 265 | 210 |
35 | 145 | 110 | 120 | 310 | 245 |
50 | 180 | 140 | 150 | 355 | 290 |
Таблица 1.3.20. Допустимый длительный ток для трехжильных кабелей напряжением 6 кВ с алюминиевыми жилами с обедненнопропитанной изоляцией в общей свинцовой оболочке, прокладываемых в земле и воздухе
Сечение токопроводящей жилы, мм 2 | Ток, А, для кабелей проложенных | Сечение токопро водящей жилы, мм 2 | Ток, А, для кабелей проложенных | ||
---|---|---|---|---|---|
в земле | в воздухе | в земле | в воздухе | ||
16 | 70 | 50 | 70 | 170 | 130 |
25 | 90 | 70 | 95 | 205 | 160 |
35 | 110 | 85 | 120 | 240 | 190 |
50 | 140 | 110 | 150 | 275 | 225 |
Таблица 1.3.21. Допустимый длительный ток для кабелей с отдельно освинцованными медными жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе
Сечение токопроводящей жилы, мм 2 | Ток, А, для трехжильных кабелей напряжением, кВ | |||||
---|---|---|---|---|---|---|
20 | 35 | |||||
при прокладке | ||||||
в земле | в воде | в воздухе | в земле | в воде | в воздухе | |
25 | 110 | 120 | 85 | – | – | – |
35 | 135 | 145 | 100 | – | – | – |
50 | 165 | 180 | 120 | – | – | – |
70 | 200 | 225 | 150 | – | – | – |
95 | 240 | 275 | 180 | – | – | – |
120 | 275 | 315 | 205 | 270 | 290 | 205 |
150 | 315 | 350 | 230 | 310 | – | 230 |
185 | 355 | 390 | 265 | – | – | – |
Таблица 1.3.22. Допустимый длительный ток для кабелей с отдельно освинцованными алюминиевыми жилами с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией, прокладываемых в земле, воде, воздухе
Сечение токопроводящей жилы, мм 2 | Ток, А, для трехжильных кабелей напряжением, кВ | |||||
---|---|---|---|---|---|---|
20 | 35 | |||||
при прокладке | ||||||
в земле | в воде | в воздухе | в земле | в воде | в воздухе | |
25 | 85 | 90 | 65 | – | – | – |
35 | 105 | 110 | 75 | – | – | – |
50 | 125 | 140 | 90 | – | – | – |
70 | 155 | 175 | 115 | – | – | – |
95 | 185 | 210 | 140 | – | – | – |
120 | 210 | 245 | 160 | 210 | 225 | 160 |
150 | 240 | 270 | 175 | 240 | – | 175 |
185 | 275 | 300 | 205 | – | – | – |
Таблица 1.3.23. Поправочный коэффициент на допустимый длительный ток для кабелей, проложенных в земле, в зависимости от удельного сопротивления земли
Характеристика земли | Удельное сопротивление см•К/Вт | Поправочный коэффициент |
---|---|---|
Песок влажностью более 9% песчано-глинистая почва влажностью более 1% | 80 | 1,05 |
Нормальные почва и песок влажностью 7-9%, песчано-глинистая почва влажностью 12-14% | 120 | 1,00 |
Песок влажностью более 4 и менее 7%, песчано-глинистая почва влажностью 8-12% | 200 | 0,87 |
Песок влажностью до 4%, каменистая почва | 300 | 0,75 |
При удельном сопротивлении земли, отличающемся от 120 см•К/Вт, необходимо к токовым нагрузкам, указанным в упомянутых ранее таблицах, применять поправочные коэффициенты, указанные в табл. 1.3.23.
1.3.14. Для кабелей, проложенных в воде, допустимые длительные токи приведены в табл. 1.3.14, 1.3.17, 1.3.21, 1.3.22. Они приняты из расчета температуры воды +15 °С.
1.3.15. Для кабелей, проложенных в воздухе, внутри и вне зданий, при любом количестве кабелей и температуре воздуха +25 °С допустимые длительные токи приведены в табл. 1.3.15, 1.3.18—1.3.22, 1.3.24, 1.3.25.
1.3.16. Допустимые длительные токи для одиночных кабелей, прокладываемых в трубах в земле, должны приниматься как для тех же кабелей, прокладываемых в воздухе, при температуре, равной температуре земли.
Таблица 1.3.24. Допустимый длительный ток для одножильных кабелей с медной жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой оболочке, небронированных, прокладываемых в воздухе
Сечение токопроводящей жилы, мм 2 | Ток *, А, для кабелей напряжением, кВ | ||
---|---|---|---|
до 3 | 20 | 35 | |
10 | 85/– | – | – |
16 | 120/– | – | – |
25 | 145/– | 105/110 | – |
35 | 170/– | 125/135 | – |
50 | 215/– | 155/165 | – |
70 | 260/– | 185/205 | – |
95 | 305/– | 220/255 | – |
120 | 330/– | 245/290 | 240/265 |
150 | 360/– | 270/330 | 265/300 |
185 | 385/– | 290/360 | 285/335 |
240 | 435/– | 320/395 | 315/380 |
300 | 460/– | 350/425 | 340/420 |
400 | 485/– | 370/450 | – |
500 | 505/– | – | – |
625 | 525/– | – | – |
800 | 550/– | – | – |
* В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35-125 мм, в знаменателе — для кабелей, расположенных вплотную треугольником.
1.3.17. При смешанной прокладке кабелей допустимые длительные токи должны приниматься для участка трассы с наихудшими условиями охлаждения, если длина его более 10 м. Рекомендуется применять в указанных случаях кабельные вставки большего сечения.
1.3.18. При прокладке нескольких кабелей в земле (включая прокладку в трубах) допустимые длительные токи должны быть уменьшены путем введения коэффициентов, приведенных в табл. 1.3.26. При этом не должны учитываться резервные кабели.
Прокладка нескольких кабелей в земле с расстояниями между ними менее 100 мм в свету не рекомендуется.
1.3.19. Для масло- и газонаполненных одножильных бронированных кабелей, а также других кабелей новых конструкций допустимые длительные токи устанавливаются заводами-изготовителями.
1.3.20. Допустимые длительные токи для кабелей, прокладываемых в блоках, следует определять по эмпирической формуле
где
I0 — допустимый длительный ток для трехжильного кабеля напряжением 10 кВ с медными или алюминиевыми жилами, определяемый по табл. 1.3.27;
a — коэффициент, выбираемый по табл. 1.3.28 в зависимости от сечения и расположения кабеля в блоке;
b — коэффициент, выбираемый в зависимости от напряжения кабеля:
Номинальное напряжение кабеля, кВ | До 3 | 6 | 10 |
---|---|---|---|
Коэффициент b | 1,09 | 1,05 | 1,0 |
c — коэффициент, выбираемый в зависимости от среднесуточной загрузки всего блока:
Среднесуточная загрузка Sср.сут./Sном | 1 | 0,85 | 0,7 |
---|---|---|---|
Коэффициент c | 1 | 1,07 | 1,16 |
Таблица 1.3.25. Допустимый длительный ток для одножильных кабелей с алюминиевой жилой с бумажной пропитанной маслоканифольной и нестекающей массами изоляцией в свинцовой или алюминиевой оболочке, небронированных, прокладываемых в воздухе
Сечение токопроводящей жилы, мм 2 | Ток *, А, для кабелей напряжением, кВ | ||
---|---|---|---|
до 3 | 20 | 35 | |
10 | 65/– | – | – |
16 | 90/– | – | – |
25 | 110/– | 80/85 | – |
35 | 130/– | 95/105 | – |
50 | 165/– | 120/130 | – |
70 | 200/– | 140/160 | – |
95 | 235/– | 170/195 | – |
120 | 255/– | 190/225 | 185/205 |
150 | 275/– | 210/255 | 205/230 |
185 | 295/– | 225/275 | 220/255 |
240 | 335/– | 245/305 | 245/290 |
300 | 355/– | 270/330 | 260/330 |
400 | 375/– | 285/350 | – |
500 | 390/– | – | – |
625 | 405/– | – | – |
800 | 425/– | – | – |
* В числителе указаны токи для кабелей, расположенных в одной плоскости с расстоянием в свету 35-125 мм, в знаменателе — для кабелей, расположенных вплотную треугольником.
Таблица 1.3.26. Поправочный коэффициент на количество работающих кабелей, лежащих рядом в земле (в трубах или без труб)
Расстояние между кабелями в свету, мм 2 | Коэффициент при количестве кабелей | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
100 | 1,00 | 0,90 | 0,85 | 0,80 | 0,78 | 0,75 |
200 | 1,00 | 0,92 | 0,87 | 0,84 | 0,82 | 0,81 |
300 | 1,00 | 0,93 | 0,90 | 0,87 | 0,86 | 0,85 |
Таблица 1.3.27. Допустимый длительный ток для кабелей, кВ с медными или алюминиевыми жилами сечением 95 мм, прокладываемых в блоках
Таблица 1.3.28. Поправочный коэффициент a на сечение кабеля
Сечение токопроводящей жилы, мм 2 | Коэффициент для номера канала в блоке | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
25 | 0,44 | 0,46 | 0,47 | 0,51 |
35 | 0,54 | 0,57 | 0,57 | 0,60 |
50 | 0,67 | 0,69 | 0,69 | 0,71 |
70 | 0,81 | 0,84 | 0,84 | 0,85 |
95 | 1,00 | 1,00 | 1,00 | 1,00 |
120 | 1,14 | 1,13 | 1,13 | 1,12 |
150 | 1,33 | 1,30 | 1,29 | 1,26 |
185 | 1,50 | 1,46 | 1,45 | 1,38 |
240 | 1,78 | 1,70 | 1,68 | 1,55 |
Резервные кабели допускается прокладывать в незанумерованных каналах блока, если они работают, когда рабочие кабели отключены.
1.3.21. Допустимые длительные токи для кабелей, прокладываемых в двух параллельных блоках одинаковой конфигурации, должны уменьшаться путем умножения на коэффициенты, выбираемые в зависимости от расстояния между блоками:
Расстояние между блоками, мм 2 | 500 | 1000 | 1500 | 2000 | 2500 | 3000 |
---|---|---|---|---|---|---|
Коэффициент | 0,85 | 0,89 | 0,91 | 0,93 | 0,95 | 0,96 |
Допустимые длительные токи для неизолированных проводов и шин
1.3.22. Допустимые длительные токи для неизолированных проводов и окрашенных шин приведены в табл. 1.3.29—1.3.35. Они приняты из расчета допустимой температуры их нагрева +70 °С при температуре воздуха +25 °С.
Для полых алюминиевых проводов марок ПА500 и ПА600 допустимый длительный ток следует принимать:
Марка провода | ПА500 | Па6000 |
---|---|---|
Ток, А | 1340 | 1680 |
1.3.23. При расположении шин прямоугольного сечения плашмя токи, приведенные в табл. 1.3.33, должны быть уменьшены на 5% для шин с шириной полос до 60 мм и на 8% для шин с шириной полос более 60 мм.
1.3.24. При выборе шин больших сечений необходимо выбирать наиболее экономичные по условиям пропускной способности конструктивные решения, обеспечивающие наименьшие добавочные потери от поверхностного эффекта и эффекта близости и наилучшие условия охлаждения (уменьшение количества полос в пакете, рациональная конструкция пакета, применение профильных шин и т.п.).
Таблица 1.3.29. Допустимый длительный ток для неизолированных проводов по ГОСТ 839-80
Номинальное сечение, мм 2 | Сечение (алюминий/сталь), мм 2 | Ток, А, для проводов марок | |||||
---|---|---|---|---|---|---|---|
АС, АСКС, АСК, АСКП | М | А и АКП | М | А и АКП | |||
вне помещений | внутри помещений | вне помещений | внутри помещений | ||||
10 | 10/1,8 | 84 | 53 | 95 | – | 60 | – |
16 | 16/2,7 | 111 | 79 | 133 | 105 | 102 | 75 |
25 | 25/4,2 | 142 | 109 | 183 | 136 | 137 | 106 |
35 | 35/6,2 | 175 | 135 | 223 | 170 | 173 | 130 |
50 | 50/8 | 210 | 165 | 275 | 215 | 219 | 165 |
70 | 70/11 | 265 | 210 | 337 | 265 | 268 | 210 |
95 | 95/16 | 330 | 260 | 422 | 320 | 341 | 255 |
120/19 | 390 | 313 | 485 | 375 | 395 | 300 | |
120/27 | 375 | – | |||||
150/19 | 450 | 365 | 570 | 440 | 465 | 355 | |
120 | 150/24 | 450 | 365 | ||||
150 | 150/34 | 450 | – | ||||
185 | 185/24 | 520 | 430 | 650 | 500 | 540 | 410 |
185/29 | 510 | 425 | |||||
185/43 | 515 | – | |||||
240 | 240/32 | 605 | 505 | 760 | 590 | 685 | 490 |
240/39 | 610 | 505 | |||||
240/56 | 610 | – | |||||
300 | 300/39 | 710 | 600 | 880 | 680 | 740 | 570 |
300/48 | 690 | 585 | |||||
300/66 | 680 | – | |||||
330 | 330/27 | 730 | – | – | – | – | – |
400 | 400/22 | 830 | 713 | 1050 | 815 | 895 | 690 |
400/51 | 825 | 705 | |||||
400/64 | 860 | – | |||||
500 | 500/27 | 960 | 830 | – | 980 | – | 820 |
500/64 | 945 | 815 | |||||
600 | 600/72 | 1050 | 920 | – | 1100 | – | 955 |
700 | 700/86 | 1180 | 1040 | – | – | – | – |
Таблица 1.3.30. Допустимый длительный ток для шин круглого и трубчатого сечений
Диаметр, мм | Круглые шины | Медные трубы | Алюминиевые трубы | Стальные трубы | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ток *, А | Внутренний и наружный диаметры, мм | Ток, А | Внутренний и наружный диаметры, мм | Ток, А | Условный проход, мм | Толщина стенки, мм | Наружный диаметр, мм | Переменный ток, А | |||
медные | алюминиевые | без разреза | с продольным разрезом | ||||||||
6 | 155/155 | 120/120 | 12/15 | 340 | 13/16 | 295 | 8 | 2,8 | 13,5 | 75 | – |
7 | 195/195 | 150/150 | 14/18 | 460 | 17/20 | 345 | 10 | 2,8 | 17,0 | 90 | – |
8 | 235/235 | 180/180 | 16/20 | 505 | 18/22 | 425 | 15 | 3,2 | 21.3 | 118 | – |
10 | 320/320 | 245/245 | 18/22 | 555 | 27/30 | 500 | 20 | 3,2 | 26,8 | 145 | – |
12 | 415/415 | 320/320 | 20/24 | 600 | 26/30 | 575 | 25 | 4,0 | 33,5 | 180 | – |
14 | 505/505 | 390/390 | 22/26 | 650 | 25/30 | 640 | 32 | 4,0 | 42,3 | 220 | – |
15 | 565/565 | 435/435 | 25/30 | 830 | 36/40 | 765 | 40 | 4,0 | 48,0 | 255 | – |
16 | 610/615 | 475/475 | 29/34 | 925 | 35/40 | 850 | 50 | 4,5 | 60,0 | 320 | – |
18 | 720/725 | 560/560 | 35/40 | 1100 | 40/45 | 935 | 65 | 4,5 | 75,5 | 390 | – |
19 | 780/785 | 605/610 | 40/45 | 1200 | 45/50 | 1040 | 80 | 4,5 | 88,5 | 455 | – |
20 | 835/840 | 650/655 | 45/50 | 1330 | 50/55 | 1150 | 100 | 5,0 | 114 | 670 | 770 |
21 | 900/905 | 695/700 | 49/55 | 1580 | 54/60 | 1340 | 125 | 5,5 | 140 | 800 | 890 |
22 | 955/965 | 740/745 | 53/60 | 1860 | 64/70 | 1545 | 150 | 5,5 | 165 | 900 | 1000 |
25 | 1140/1165 | 885/900 | 62/70 | 2295 | 74/80 | 1770 | – | – | – | – | – |
27 | 1270/1290 | 980/1000 | 72/80 | 2610 | 72/80 | 2035 | – | – | – | – | – |
28 | 1325/1360 | 1025/1050 | 75/85 | 3070 | 75/85 | 2400 | – | – | – | – | – |
30 | 1450/1490 | 1120/1155 | 90/95 | 2460 | 90/95 | 1925 | – | – | – | – | – |
35 | 1770/1865 | 1370/1450 | 95/100 | 3060 | 90/100 | 2840 | – | – | – | – | – |
38 | 1960/2100 | 1510/1620 | – | – | – | – | – | – | – | – | – |
40 | 2080/2260 | 1610/1750 | – | – | – | – | – | – | – | – | – |
42 | 2200/2430 | 1700/1870 | – | – | – | – | – | – | – | – | – |
45 | 2380/2670 | 1850/2060 | – | – | – | – | – | – | – | – | – |
* В числителе приведены нагрузки при переменном токе, в знаменателе — при постоянном.
Таблица 1.3.31. Допустимый длительный ток для шин прямоугольного сечения
Размеры, мм | Медные шины | Алюминиевые шины | Стальные шины | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ток *, А, при количестве полос на полюс или фазу | Размеры, мм | Ток *, А | ||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
15х3 | 210 | – | – | – | 165 | – | – | – | 16х2,5 | 55/70 |
20х3 | 275 | – | – | – | 215 | – | – | – | 20х2,5 | 60/90 |
25х3 | 340 | – | – | – | 265 | – | – | – | 25х2,5 | 75/110 |
30х4 | 475 | – | – | – | 365/370 | – | – | – | 20х3 | 65/100 |
40х4 | 625 | –/1090 | – | – | 480 | –/855 | – | – | 25х3 | 80/120 |
40х5 | 700/705 | –/1250 | – | – | 540/545 | –/965 | – | – | 30х3 | 95/140 |
50х5 | 860/870 | –/1525 | –/1895 | – | 665/670 | –/1180 | –/1470 | – | 40х3 | 125/190 |
50х6 | 955/960 | –/1700 | –/2145 | – | 740/745 | –/1315 | –/1655 | – | 50х3 | 155/230 |
60х6 | 1125/1145 | 1740/1990 | 2240/2495 | – | 870/880 | 1350/1555 | 1720/1940 | – | 60х3 | 185/280 |
80х6 | 1480/1510 | 2110/2630 | 2720/3220 | – | 1150/1170 | 1630/2055 | 2100/2460 | – | 70х3 | 215/320 |
100х6 | 1810/1875 | 2470/3245 | 3170/3940 | – | 1425/1455 | 1935/2515 | 2500/3040 | – | 75х3 | 230/345 |
60х8 | 1320/1345 | 2160/2485 | 2790/3020 | – | 1025/1040 | 1680/1840 | 2180/2330 | – | 80х3 | 245/365 |
80х8 | 1690/1755 | 2620/3095 | 3370/3850 | – | 1320/1355 | 2040/2400 | 2620/2975 | – | 90х3 | 275/410 |
100х8 | 2080/2180 | 3060/3810 | 3930/4690 | – | 1625/1690 | 2390/2945 | 3050/3620 | – | 100х3 | 305/460 |
120х8 | 2400/2600 | 3400/4400 | 4340/5600 | – | 1900/2040 | 2650/3350 | 3380/4250 | – | 20х4 | 70/115 |
60х10 | 1475/1525 | 2560/2725 | 3300/3530 | – | 1155/1180 | 2010/2110 | 2650/2720 | – | 22х4 | 75/125 |
80х10 | 1900/1990 | 3100/3510 | 3990/4450 | – | 1480/1540 | 2410/2735 | 3100/3440 | – | 25х4 | 85/140 |
100х10 | 2310/2470 | 3610/4325 | 4650/5385 | 5300/6060 | 1820/1910 | 2860/3350 | 3650/4160 | 4150/4400 | 30х4 | 100/165 |
120х10 | 2650/2950 | 4100/5000 | 5200/6250 | 5900/6800 | 2070/2300 | 3200/3900 | 4100/4860 | 4650/5200 | 40х4 | 130/220 |
50х4 | 165/270 | |||||||||
60х4 | 195/325 | |||||||||
70х4 | 225/375 | |||||||||
80х4 | 260/430 | |||||||||
90х4 | 290/480 | |||||||||
100х4 | 325/535 |
* В числителе приведены значения переменного тока, в знаменателе — постоянного.
Таблица 1.3.32. Допустимый длительный ток для неизолированных бронзовых и сталебронзовых проводов
Провод | Марка провода | Ток *, А |
---|---|---|
Бронзовый | Б-50 | 215 |
Б-70 | 265 | |
Б-95 | 330 | |
Б-120 | 380 | |
Б-150 | 430 | |
Б-185 | 500 | |
Б-240 | 600 | |
Б-300 | 700 | |
Сталебронзовый | БС-185 | 515 |
БС-240 | 640 | |
БС-300 | 750 | |
БС-400 | 890 | |
БС-500 | 980 |
* Токи даны для бронзы с удельным сопротивлением ρ20=0,03 Ом•мм 2 /м.
Таблица 1.3.33. Допустимый длительный ток для неизолированных стальных проводов
Марка провода | Ток, А | Марка провода | Ток, А |
---|---|---|---|
ПСО-3 | 23 | ПС-25 | 60 |
ПСО-3,5 | 26 | ПС-35 | 75 |
ПСО-4 | 30 | ПС-50 | 90 |
ПСО-5 | 35 | ПС-70 | 125 |
ПС-95 | 135 |
Таблица 1.3.34. Допустимый длительный ток для четырехполосных шин с расположением полос но сторонам квадрата («полый пакет»)
Размеры, мм | Поперечное сечение четырехполосной шины, мм 2 | Ток, А, на пакет шин | ||||
---|---|---|---|---|---|---|
h | b | h1 | H | медных | алюминиевых | |
80 | 8 | 140 | 157 | 2560 | 5750 | 4550 |
80 | 10 | 144 | 160 | 3200 | 6400 | 5100 |
100 | 8 | 160 | 185 | 3200 | 7000 | 5550 |
100 | 10 | 164 | 188 | 4000 | 7700 | 6200 |
120 | 10 | 184 | 216 | 4800 | 9050 | 7300 |
Таблица 1.3.35. Допустимый длительный ток для шин коробчатого сечения
Размеры, мм | Поперечное сечение одной шины, мм 2 | Ток, А, на две шины | ||||
---|---|---|---|---|---|---|
a | b | c | r | медные | алюминиевые | |
75 | 35 | 4 | 6 | 520 | 2730 | – |
75 | 35 | 5,5 | 6 | 695 | 3250 | 2670 |
100 | 45 | 4,5 | 8 | 775 | 3620 | 2820 |
100 | 45 | 6 | 8 | 1010 | 4300 | 3500 |
125 | 55 | 6,5 | 10 | 1370 | 5500 | 4640 |
150 | 65 | 7 | 10 | 1785 | 7000 | 5650 |
175 | 80 | 8 | 12 | 2440 | 8550 | 6430 |
200 | 90 | 10 | 14 | 3435 | 9900 | 7550 |
200 | 90 | 12 | 16 | 4040 | 10500 | 8830 |
225 | 105 | 12,5 | 16 | 4880 | 12500 | 10300 |
250 | 115 | 12,5 | 16 | 5450 | – | 10800 |
Выбор сечения проводников по экономической плотности тока
1.3.25. Сечения проводников должны быть проверены по экономической плотности тока. Экономически целесообразное сечение S, мм 2 , определяется из соотношения
где I — расчетный ток в час максимума энергосистемы, А; Jэк — нормированное значение экономической плотности тока, А/мм², для заданных условий работы, выбираемое по табл. 1.3.36.
Сечение, полученное в результате указанного расчета, округляется до ближайшего стандартного сечения. Расчетный ток принимается для нормального режима работы, т. е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается.
1.3.26. Выбор сечений проводов линий электропередачи постоянного и переменного тока напряжением 330 кВ и выше, а также линий межсистемных связей и мощных жестких и гибких токопроводов, работающих с большим числом часов использования максимума, производится на основе технико-экономических расчетов.
1.3.27. Увеличение количества линий или цепей сверх необходимого по условиям надежности электроснабжения в целях удовлетворения экономической плотности тока производится на основе технико-экономического расчета. При этом во избежание увеличения количество линий или цепей допускается двукратное превышение нормированных значений, приведенных в табл. 1.3.36.
Таблица 1.3.36. Экономическая плотность тока
Проводники | Экономическая плотность тока, А/мм, при числе часов использования максимума нагрузки в год | ||
---|---|---|---|
более 1000 до 3000 | более 3000 до 5000 | более 5000 | |
Неизолированные провода и шины: | |||
– медные | 2,5 | 2,1 | 1,8 |
– алюминиевые | 1,3 | 1,1 | 1,0 |
Кабели с бумажной и провода с резиновой и поливинилхлоридной изоляцией с жилами: | |||
– медными | 3,0 | 2,5 | 2,0 |
– алюминиевыми | 1,6 | 1,4 | 1,2 |
Кабели с резиновой и пластмассовой изоляцией с жилами: | |||
– медными | 3,5 | 3,1 | 2,7 |
– алюминиевыми | 1,9 | 1,7 | 1,6 |
В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.
Данными указаниями следует руководствоваться также при замене существующих проводов проводами большего сечения или при прокладке дополнительных линий для обеспечения экономической плотности тока при росте нагрузки. В этих случаях должна учитываться также полная стоимость всех работ по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и материалов.
1.3.28. Проверке по экономической плотности тока не подлежат:
- сети промышленных предприятий и сооружений напряжением до 1 кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;
- ответвления к отдельным электроприемникам напряжением до 1 кВ, а также осветительные сети промышленных предприятий, жилых и общественных зданий;
- сборные шины электроустановок и ошиновка в пределах открытых и закрытых распределительных устройств всех напряжений;
- проводники, идущие к резисторам, пусковым реостатам и т. п.;
- сети временных сооружений, а также устройства со сроком службы 3-5 лет.
1.3.29. При пользовании табл. 1.3.36 необходимо руководствоваться следующим (см. также 1.3.27):
- При максимуме нагрузки в ночное время экономическая плотность тока увеличивается на 40%.
- Для изолированных проводников сечением 16 мм 2 и менее экономическая плотность тока увеличивается на 40%.
- Для линий одинакового сечения с n ответвляющимися нагрузками экономическая плотность тока в начале линии может быть увеличена в ky раз, причем ky определяется из выражения
где l1,l2,…ln — нагрузки отдельных участков линии; l1,l2,…ln — длины отдельных участков линии; L — полная длина линии.
1.3.30. Сечение проводов ВЛ 35 кВ в сельской местности, питающих понижающие подстанции 35/6 — 10 кВ с трансформаторами с регулированием напряжения под нагрузкой, должно выбираться по экономической плотности тока. Расчетную нагрузку при выборе сечений проводов рекомендуется принимать на перспективу в 5 лет, считая от года ввода ВЛ в эксплуатацию. Для ВЛ 35 кВ, предназначенных для резервирования в сетях 35 кВ в сельской местности, должны применяться минимальные по длительно допустимому току сечения проводов, исходя из обеспечения питания потребителей электроэнергии в послеаварийных и ремонтных режимах.
1.3.31. Выбор экономических сечений проводов воздушных и жил кабельных линий, имеющих промежуточные отборы мощности, следует производить для каждого из участков, исходя из соответствующих расчетных токов участков. При этом для соседних участков допускается принимать одинаковое сечение провода, соответствующее экономическому для наиболее протяженного участка, если разница между значениями экономического сечения для этих участков находится в пределах одной ступени по шкале стандартных сечений. Сечения проводов на ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой производится ответвление. При большей длине ответвления экономическое сечение определяется по расчетной нагрузке этого ответвления.
1.3.32. Для линий электропередачи напряжением 6-20 кВ приведенные в табл. 1.3.36 значения плотности тока допускается применять лишь тогда, когда они не вызывают отклонения напряжения у приемников электроэнергии сверх допустимых пределов с учетом применяемых средств регулирования напряжения и компенсации реактивной мощности.
Проверка проводников по условиям короны и радиопомех
1.3.33. При напряжении 35 кВ и выше проводники должны быть проверены по условиям образования короны с учетом среднегодовых значений плотности и температуры воздуха на высоте расположения данной электроустановки над уровнем моря, приведенного радиуса проводника, а также коэффициента негладкости проводников.
При этом наибольшая напряженность поля у поверхности любого из проводников, определенная при среднем эксплуатационном напряжении, должна быть не более 0,9 начальной напряженности электрического поля, соответствующей появлению общей короны.
Проверку следует проводить в соответствии с действующими руководящими указаниями.
Кроме того, для проводников необходима проверка по условиям допустимого уровня радиопомех от короны.
Источник