Что происходит с маслом в трансформаторе во время работы

    1. Назначение трансформаторного масла

В
большинстве трансформаторов, применяемых
для энергоснабжения, используется
трансформаторное масло, получаемое из
нефти. И только часть распределительных
трансформаторов заполняется негорючей
синтетической жидкостью и часть
выполняется в сухом виде, т. е. без
заполнения жидким диэлектриком. Как
правило, все трансформаторы номинального
напряжения выше 35 кВ заполняются
трансформаторным маслом. Масло в
трансформаторе выполняет две функции:
электрической изоляции и передачи тепла
от активной части трансформатора к
устройствам охлаждения. В качестве
диэлектрика трансформаторное масло
используется в трех основных типах
изоляционных конструкций:


Чисто масляные промежутки, например,
между контактами переключающих
устройств.


Масляные промежутки в комбинации с
пропитанной маслом твердой
изоляцией.

Например,
изоляция между обмотками, имеющими
твердую витковую изоляцию и масляный
промежуток, подразделенный барьерами
из пропитанного маслом электротехнического
картона.


Пропитанная маслом твердая изоляция,
например между витками обмотки и в
высоковольтных конденсаторных вводах
с бумажно-масляной изоляцией. Потери
энергии в трансформаторе вызывают
нафтен обмоток, магнитной системы, а
также деталей конструкции. Нагрев
ограничен передачей тепла в окружающее
пространство. Благодаря относительно
малой вязкости и высокой теплоемкости
трансформаторное масло является хорошим
переносчиком тепла от наиболее нагретых
частей трансформатора к его охлаждающим
устройствам.

Трансформаторное
масло получают перегонкой и последующей
очисткой сырой нефти Оно представляет
собой смесь углеводородов в пропорциях
в зависимости от месторождения нефти.
Углеводороды, грубо говоря, делятся на
три класса: нафтеновые, парафиновые и
ароматические. Нафтеновые и парафиновые
являются насыщенными углеводородами,
химически стабильными. Они отличаются
друг от друга химической структурой, а
также физическими и химическими
свойствами. Ароматические — являются
ненасыщенными углеводородами и поэтому
они менее стабильны и более химически
активны.
Применяемая
за рубежом классификация масел как
нафтеновых или парафиновых не означает,
что эти масла состоят исключительно из
нафтеновых или парафиновых углеводородов,
а указывает на преобладание характеристик
одного из этих классов в смеси нафтеновых,
парафиновых и ароматических углеводородов.
Источники нафтеновой нефти встречаются
все реже и имеется тенденция все более
частого применения парафиновой нефти.
Это не приводит к каким либо отрицательным
последствиям за исключением возможного
повышения температуры застывания, что
устраняется с помощью специальных
добавок. Трансформаторное масло при
работе в трансформаторах подвергается
тепловому старению, при этом происходит
окисление масла и выделение шлама. За
последние десятилетия технологические
процессы получения масла были значительно
усовершенствованы и позволили увеличить
срок эксплуатации масла.

Масла
разных изготовителей (разных марок)
допускают смешивание в любой пропорции.
Для повышения стабильности масла в него
добавляют антиокислительные добавки
— ингибиторы. Все марки отечественных
масел имеют в своем составе ингибиторы.
Однако современные масла, благодаря
совершенной технологии их изготовления,
могут быть высокостабильными и не
требовать добавки ингибиторов. Для
такого масла может потребоваться
введение в него ингибиторов только в
случаях трансформаторов с тяжелым
режимом работы, например, для очень
больших трансформаторов.

Список
использованной литературы

  1. http://www.megabook.ru/Article.asp?AID=632243

  2. http://bse.sci-lib.com/article040145.html

  3. http://bse.sci-lib.com/article040145.html

  4. http://mirsmazok.ru/blogs/modules.php?name=articles&id=720

  5. http://www.npo64.ru/transformatornoe-maslo/

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

масло в трансформаторе

Главной частью трансформатора являются его обмотки, которые требуется защитить. В процессе понижения высокого в низкое напряжение аппарат генерирует много тепла. Если не удалять тепло, медь начнёт плавиться и электрический контакт будет потерян.

Зачем масло в трансформаторе

Надежная работа высоковольтных трансформаторов обусловлена применением масла:

  • охлаждение. Во время скачков напряжения вверх/вниз температура трансформаторных обмоток увеличивается, что требует надлежащего охлаждения;
  • электрическая изоляция. Масло действует как изолятор между обмотками, увеличенное сопротивление изоляции помогает избежать короткого замыкания;
  • мера безопасности. Газовая защита (по принципу Бухгольца) основана на подаче сигнала на отключение при появлении бурного газообразования, приводящего к короткому замыканию. Индикатор температуры масла описывает внутреннее состояние трансформаторного бака. Масло помогает избежать тяжелых потерь и повреждений аппаратов.

В трансформаторах мощностью 50—500 кВА применяют бумажно-масляную изоляцию, в основе которой лежит изоляционная бумага, пропитанная маслом. У трансформаторов мощностью до 20—30 кВА применяют большие сварные конструкции из стального листа с многочисленными трубами, параллельно выходящими из одной или нескольких её сторон. Магнитопровод с обмотками помещается в трубчатый бак. Масло окружает электрические обмотки, и забирает от них тепло. Через конвекцию, в горячем виде оно поднимается в верхнюю часть трубы, охлаждаясь, опускается вниз, и стекает обратно в резервуар с более низкой температурой. Затем всё повторяется по той же схеме.

Направленное масляное охлаждение обеспечивает равномерную теплоотдачу между обмоткой и маслом, которое имеет:

  1. очень хороший коэффициент теплопроводности (легко отводит тепло);
  2. высокую точку кипения, поэтому оно остается жидким внутри трансформатора.

Химическая стабильность является весьма важным показателем, характеризующим стойкость вещества вне зависимости от времени.
Трансформаторное масло обеспечивает хорошие условия для среды гашения дуги. Изоляция сокращает потери меди за счет нагрева, уменьшает шум, создающийся в трансформаторе, приводит к снижению уровня вибрации. Масло не проводит электричество вообще, что наилучшим образом соответствует условиям короткого замыкания.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Силовые высоковольтные трансформаторы работают под мощным напряжением, обеспечивая электричеством целые города и предприятия. Установки иннервируют много тепла. В процессе эксплуатации накапливают в себе продукты горения, вредные примеси. Если их не удалять вовремя, то электрические контакты будет утрачены, а медная проводка – расплавится. Значит, к трансформаторному изоляционному маслу – неотъемлемой составляющей и жидкому диэлектрику выдвигаются повышенные физические, химические, технические и эксплуатационные требования.

Добывают рабочую жидкость за счет перегонки очищенной сырой нефти с подачей температуры вскипания до 400 гр. На выходе получается масло с определенными свойствами, зависящими от изначально используемой нефти.

Содержание

  1. Назначение трансформаторного масла
  2. Электрические трансформаторы
  3. Контактные группы выключателей
  4. Состав и свойства
  5. Технические характеристики
  6. Плотность
  7. Коэффициент вязкости
  8. Динамический
  9. Кинематический
  10. Кислотное число
  11. Температура
  12. Вспышки
  13. Застывания
  14. Кипения
  15. Удельная массовая теплоемкость
  16. Теплопроводность
  17. Объемное расширение
  18. Критерий Прандтля
  19. Цвет
  20. Зольность
  21. Содержание серы
  22. Натровая проба
  23. Механизм вспышки и воспламенения
  24. Как проверяют
  25. Методы очистки
  26. Центрифугирование
  27. Фильтрование
  28. Адсорбционная обработка
  29. Вакуумная обработка
  30. Особенности эксплуатации
  31. Марки
  32. Т-1500У
  33. ТСП
  34. ТКП
  35. АГК
  36. МВТ
  37. Mobil Mobilect 44 N
  38. Shell Diala
  39. Мдпн
  40. Понятие старения
  41. Заменители
  42. Варианты применения трансформаторного масла в быту

Назначение трансформаторного масла

Электрооборудование (трансформаторы, конденсаторы, кабели) с работой под высоким напряжением быстро сломаются и выйдут из строя, если их не заливать рабочим маслом. Его основное предназначение – изоляция токоведущих обмоток. Также жидкость:

  • охлаждает;
  • гасит дугу.

Обмотка – играет в трансформаторе защитную функцию. Окружающее ее масло в резервуаре защищает от износа и выхода из строя. За счет конвекции поднимается вверх по трубе бака, охлаждается и вновь опускается вниз. Так циркулирует постоянно по мере нагревания.

Силовые высоковольтные трансформаторы

Справка! Масло в резервуаре тушит вспыхнувшую дугу в случае пробоя обмотки. Это бессменный диэлектрик, заглушающий шум работы трансформатора, снижающий степень вибрации. Только благодаря масляной среде не происходит распространения электрического заряда.

Электрические трансформаторы

В трансформаторах электрического типа масло используется как диэлектрик и биоразлагаемое нетоксичное топливо, поэтому:

  • отводит тепло;
  • обеспечивает изоляцию между обмотками;
  • препятствует короткому замыканию, выходу трансформаторов из строя;
  • охлаждает установку;
  • не повредит озоновый слой;
  • обеспечит безупречную теплопередачу и диэлектрическую прочность трансформатору;
  • воспрепятствует образованию дуги в переключателях.

Заметка! Если мощность силового трансформатора – 50-500 кВА, то используется бумажно-масляная изоляция (пропитанная маслом изоляционная бумага). При мощности агрегата 20-30 кВА применимы сварные стальные конструкции в виде трубчатого бака, куда и помещается магнитопровод с обмотками. Между ними и маслом создается теплоотдача с хорошим коэффициентом теплопроводности, высокой точкой кипения. Рабочая жидкость не проводит электричество и не допустит короткого замыкания в системе.

Электрические трансформаторы

Контактные группы выключателей

Выключатели на высоковольтных подстанциях подают электроэнергию в города, на промышленные предприятия. Их размеры соизмеримы с небольшим домом с работой под напряжением – 200 300000 Вт, силой тока до 50000 А.

Масло в выключателях служит:

  • изоляцией;
  • гасителем электронной дуги.

Если возникнет электрическая дуга в случае замыкания контактов, то ситуация буквально за несколько циклов приведет к их разрушению. Если внутрь трансформатора залить свежее масло, то искрения попросту не произойдет.

Контактные группы выключателей

Состав и свойства

Трансформаторное масло – минеральный жидкий диэлектрик со сложной структурой и формулой. В состав входят:

  • парафины, циклопарафины;
  • молекулы углеводородов;
  • асфальт смолистые компоненты;
  • серные, азотные соединения;
  • нафтеновые кислоты;
  • антиоксидантные добавки.

трансформаторное масло

Свойства масла полностью зависят от сорта, параметров исходной фракции нефти. Основные:

  • подвижность в условиях эксплуатации при температуре застывания -45 градусов и ниже;
  • отсутствие воспламенения при температуре вспышки (+90+150гр);
  • неприспособленность к окислению, хотя ингибированное трансформаторное масло может окисляться под воздействием пероксидных радикалов;
  • нетоксичность, неспособность нанести вред озоновому слою;
  • вязкость, хотя в норме не должно быть слишком вязким (28 до 30 мм2/с при t+20 градусов);
  • теплопроводность (0,09 до 0,14 Вт/(м×К));
  • диэлектрическая проницаемость (2,1 до 2,4).

Справка! Свойства масла может искажать воздействие высокой температуры, контакты с воздухом, лучами солнечного света и токами короткого замыкания. Нельзя допускать влияния данных факторов, иначе повысится кислотность, снизится электрическая прочность оборудования в случае разрушения изоляционной обмотки.

На свойства масла напрямую влияет тангенс угла диэлектрических потерь, поэтому недопустимо наличие волокон воды, жидкости, механических примесей в масле. Степень свежести нефтяного изоляционного масла для выключателей и трансформаторов должна соответствовать международным стандартам. Если из нефтяного дистиллята при очищении будут полностью устранены не углеводородные включения, то в результате ингибирования ионолом в разы повысится стабильность трансформаторного масла.

трансформаторное масло

Технические характеристики

Данные жидкости должны быть сопоставимы с условиями эксплуатации электрического оборудования:

  • кислотное число с указанием едкого калия (мг) для нейтрализации свободных кислот;
  • вязкость, за счет которой масло обладает охлаждающими свойствами;
  • температура вспышки, когда пары жидкости воспламеняются от источника открытого огня;
  • реакция водной вытяжки с обозначением количества нерастворимых кислот в масле;
  • пробивное напряжение и при максимальном уровне масла не допустит пробоя у изоляции обмотки;
  • зольность, указывающая на качество промывки свежего масла, ведь иначе могут оставаться частицы мыла, солей;
  • содержание серы, которой также не должно оставаться после переработки сырой нефти.

Справка! Серные соединения – химический элемент, провоцирующий коррозию и сопротивление контактов в переключателях.

трансформаторное масло

Плотность

От плотности зависит качество, рабочие характеристики масла. Среднее значение при t +20 градусов – 900 кг/м3. По мере повышения температуры – снижается. При 0гр составляет 892 кг/м3.

Плотность – важный физический показатель масла, но полностью зависит от исходного сырья.

Коэффициент вязкости

Вязкость влияет на процессы теплообмена в наполненном агрегате маслом. Лучше, если этот показатель будет занижен для повышенной передачи тепла из обмоток.

Справка! По поводу вязкости трансформаторного масла нередко у специалистов возникают споры. Какое выбрать для заливки в электрическое оборудование? Высокая вязкость повышает электроизоляционные характеристики масла, низкая – отлично охлаждает. В целом вязкость должна зависеть от определенной температуры при работе агрегата. Силовые трансформаторы – тяжелые, габаритные. Вязкость – незаменимая часть при проведении экспертизы рабочей жидкости. Выявляется средний показатель, чтобы функциям.

Часто специалисты при выборе вязкости масла идут на компромисс. При расчетах используют такие понятия, как динамическая, кинематическая, удельная вязкость.

трансформаторное масло

Динамический

Коэффициент вязкости измеряется вискозиметром Энглера (в градусах). Рассчитывается по эмпирическим формулам с учетом силы подачи на твердый шарик в жидкости:. η = f/6ПrVk, где:

  • f – сила в (Н), действующая на твердый шарик;
  • V – скорость движения шарика, м/с;
  • r – радиус шарика (мм);
  • k – поправочный коэффициент в зависимости от влияния стенок сосуда.

Справка! Вязкость в градусах Энглера – время, которое необходимо для израсходования масла (200 мл при t+ 50 градусов). Полученное время при расчетах делится на время истечения, объем дистиллированной воды (200 мл) при t+20 градусов.

трансформаторное масло

Кинематический

Коэффициент, который получается при делении динамической вязкости на плотность трансформаторной жидкости.

Определяется вязкость за счет вискозиметра Цинкевича. Средний параметр – 28х10-6 м2/с3. При повышенном значении улучшаются электроизоляционные свойства масла. Хотя охлаждающая способность – снижается.

Совет! При выборе вязкости масла стоит опираться на среднее значение.

Кислотное число

Параметр важен при проведении полного, сокращенного анализа трансформаторной жидкости. Определяется в мг КОН, необходимых для нейтрализации 1 г нефтепродукта

Кислотное число – нормируемый показатель, указывающий на:

  • степень износа, коррозию металлических поверхностей;
  • возможное снижение диэлектрической прочности масла;
  • количество нафтеновых кислот (%), продуктов распада в масле;
  • необходимость проведения регенерации с целью продления срока службы силой установки, восстановления диэлектрической прочности, химического состава электроизоляционной жидкости.

трансформаторное масло

Температура

Масло добывается из очищенной нефти путем доведения до кипения при t +300+400 градусов. Далее трансформаторная жидкость очищается.

Температура вспышки, застывания, кипения указывает на степень свежести масла, имеет важное значение в ходе проведения диагностики.

Вспышки

Вспышка – нагрев масла до температуры, когда в сочетании с воздухом образуется легковоспламеняющаяся смесь. Топливная жидкость при этом даже не успевает загореться.

Важно! Температура вспышки в норме – не выше + 135 г. В случае нагрева свыше t вспышки масло попросту загорится при поднесении спички.

Застывания

Температура застывания – до -40 градусов, в южных районах до -35.

Под данным термином понимают масло, которое начинает застывать до такой степени, что в случай наклона пробирки под углом 45 градусов, попросту не стекает 1 минуту со стенок.

Температура застывания в масляных выключателях – важный параметр. Масло в охлажденном виде не должно застывать при t свыше 45 гр. Хотя все зависит от места заливки масла (выключатель, трансформатор), режима работы оборудования (на открытом воздухе, в закрытом помещении).

трансформаторное масло

Кипения

Температура кипения в норме +300+400 градусов. Это заключительный этап, в ходе которого получают чистое трансформаторное масло после очистки от дистиллятов.

Удельная массовая теплоемкость

Измеряется по системе СИ для промышленного масла в Дж/кг. Высокая теплоемкость масла позволяет рассеивать тепло от разных участков циркуляции в оборудовании. Но это не постоянная величина. Полностью зависит от окружающей температуры.

Среднее значение теплоемкости для трансформаторного масла – 1.67-2.5 кДж / кг. Коэффициент в ходе экспериментов исчисляется специальным номографом.

Теплопроводность

Теплопроводность (0-120 градусов) изменяется по мере старения, накопления вредных компонентов, воды, механических примесей, газов в масле. Если значительно снижается, то в трансформаторе нарушается электроизоляционная среда и отвод тепла от нагревающего элемента.

Коэффициент теплопроводности (λ, Вт/(м’К) полностью зависит от температуры масла. Например, при 0 градусов составляет – 0,1123, при +120 градусов – 0,1022.

трансформаторное масло

Объемное расширение

Показатель – ненормируемый, зависящий от температуры. При t +20 градусов равняется 0,856-0,886.

Несложно догадаться, что значение будет понижаться с повышением температуры и повышаться в случае охлаждения жидкости. При t +1 составляет 0,0007. При t +100 градусов объем расширения изменится на 7%.

Объемное расширение у трансформаторного масла предопределяется прибором Ареометром:

  • берется порция масла из трансформатора;
  • помещается в стеклянный цилиндр, затем – в ареометр;
  • проводится подсчет по верхнему краю мениска.

Важно! Силовые теплоагрегаты работают в диапазоне широких температур. Соотношение объема расширителя к объему масла должно быть на уровне 8-9%. Численный коэффициент для электроизоляционного масла в среднем равен 0,0007 на 1 ºС.

трансформаторное масло

Критерий Прандтля

Физический показатель среды трансформаторного диэлектрика высчитывается по формуле: Pr = n/a = mcp/l:

  • n = m/r — кинематический коэффициент вязкости;
  • m — динамический коэффициент вязкости;
  • r — плотность;
  • l — коэффициент теплопроводности;
  • а = l/rcp — коэффициент температуропроводности;
  • cp — удельная тепломкость среды при постоянном давлении.

Число позволяет определить физическую характеристику среды и ее термодинамическое состояние. Показатель будет изменяться при колебаниях температуры: 0 °C Pr = 866, 100 °C Pr = 43,9.

Цвет

Масло в свежем виде – светло-желтое. По мере изнашивания изменяется на темно-коричневый оттенок.

Цвет – не основной параметр масла, но может отражать степень свежести.

трансформаторное масло

Зольность

В процессе отработки масла неизбежно накапливаются мыла, соли. Даже незначительное их количество – показатель плохой промывки с оставлением нежелательного осадка.

Содержание серы

Масло добывается из сырой нефти, поэтому может оставаться частично серное соединение. Этот химический элемент провоцирует коррозию, усиление сопротивления контактов в переключателях.

Содержание серы (%) вычисляется с помощью медной пластины, помещенной в трансформаторное масло в ходе проведения диагностики.

трансформаторное масло

Натровая проба

Метод для выявления степени качества трансформаторной жидкости. Насколько она очищена от примесей, мыла, солей.

Натровая проба указывает на стабильность масла к окислению. Если завышена, значит, в жидкости остались посторонние загрязнения даже после промывки.

Механизм вспышки и воспламенения

При вспышке масло попросту вспыхивает от высоких температур, воздействия источника огня. Определяется вспышка путем подачи самой низкой температуры. Специалисты при диагностике вычисляют:

  • как вспышка сказывается на испаряемости масла;
  • сколько содержится летучих углеводородов, ведь чем их больше, тем ниже t вспышки.

Важно! Если t вспышки – низкая. Значит, в оборудовании имеются дефекты, провоцирующие образование воспламеняющих летучих фракций. Во избежание возникновения пожара и горения в трансформаторе температура воспламенения должна быть выше рабочей температурой агрегата. Если вспышка составляет 180 гр, то воспламенение должна быть не ниже 150.

По мере старения трансформаторное масло горит непрерывно, если конечно, произойдет воспламенение паровоздушной смеси после поднесения к пламени спички через 5-6 секунд. Температура воспламенения определяется после выявления вспышки. Дело в том, что смазочное масло начинает испаряться тогда, когда температура вспышки масла ниже температуры воспламенения на 60-70 гр.

Вспышка масла

Как проверяют

Показатели, по которым проверяют масло на свежесть:

  1. Содержание влаги, газа. Замеряется за счет реакции влаги, которая может быть в масле при взаимодействии с гидридом кислорода. Газы исчисляются путем изменения остаточного давления в резервуаре, заполненного маслом.
  2. Количество механических примесей.
  3. Электрическая прочность.
  4. Тангенс угла потерь. В свежем масле не превышает – 0,02%, в окисленном – свыше 0,2%.

трансформаторное масло

Методы очистки

От чистоты трансформаторного масла зависит исправность работы изоляционной системы. Но в процессе эксплуатации рабочая жидкость стареет, загрязняется с накоплением продуктов распада, окислением посторонних примесей (кислород, вода, окислы металлов, спирты, альдегиды).

Отходы при оседании на изоляции:

  • сгущают масло;
  • снижают охлаждающую способность и вязкость.

Справка! Чистое изоляционное масло обеспечивает электрическую прочность системы до 80%, предотвращает окисление в ходе работе двигателя даже под действием высоких температур, не допускает серьезные поломки в системе изоляции.

Для очищения от загрязнений используются химические, физические, физико-химические способами (кислотная и ионообменная очистка, коагуляция, адсорбция, гравитация, фильтрация).

Очистка трансформаторного масла

Центрифугирование

На центрифуге проводится предварительная очистка жидкости в случае выявления низкой электрической плотности ниже20 кВ. Масло очищается от механических примесей путем осушки с помощью вакуумных сепараторов с подачей температуры +50+60 градусов.

Фильтрование

Метод заключается в пропуске масло через фильтр-пресс производительностью до 3000 л/ час. Для фильтрации применимы:

  • пористые фильтрующие материалы для отделения взвешенных твердых частиц от масла;
  • фильтр-прессы типа ФП-2-3000, ФП-4-4;
  • мобильные установки фильтрации для передвижного оборудования.

Способ – простой, надежный. Хотя желательно сочетать 2-3 метода для восстановления и регенерации свойств загрязненного масла полностью.

Фильтрование

Адсорбционная обработка

В рабочую жидкость добавляются адсорбенты, удерживающие вредные примеси на поверхности масла:

  • окиси алюминия;
  • отбеливающая глина.

Вакуумная обработка

С помощью установки вакуума и отсасывания кислорода извлекаются:

  • вредные примеси;
  • газовые пузырьки;
  • растворенные газы.

Справка! Трансформаторное масло при отсутствии кислорода долго не портится.

Вакуумная обработка

Особенности эксплуатации

В ходе эксплуатации необходимо:

  • избегать частого перегрева масла;
  • периодически процеживать, вводить в состав противоокислительные присадки;
  • очищать от шлаков, воды;
  • предотвращать прямые контакты масла с атмосферой, устанавливая внутрь расширители для поглощения кислорода.

Свежее, полностью очищенное масло прослужит до 25 лет. Хотя очищать, регенерировать при эксплуатации важно минимум через 5 лет.

Марки

Самые востребованные эффективные марки трансформаторного масла от отечественных, зарубежных поставщиков.

Т-1500У

Масло со стойкой окислительной способностью. Используется в агрегатах до 500 кВт. В составе сера – до 0,3%.

Т-1500У

ТСП

Добывается из западносибирской нефти. Проходит селективную очистку и депарафинизацию. Может заливаться в агрегаты до 200 кВт мощностью, устойчиво к воздействию электрического поля высокого напряжения. Хотя не приспособлено к окислению сернистых соединений. Содержит воду до 0,6%.

ТКП

Рабочая жидкость для заливки трансформаторное оборудование до 500 кВт. Изготавливается из нафтеновой нефти. Проходит контактную, кислотно-щелочное очистку.

Масло ТКП

АГК

Для заливки в оборудование высших классов под напряжение. Преимущества:

  • малая вязкость при минусовых температурах;
  • низкая температура застывания.

Добывается из парафинистой нефти.

МВТ

Применение: масляные выключатели, арктические трансформаторы. Особенности: малая вязкость при любой температуре, низкая температура застывания и вспышки.

МВТ

Mobil Mobilect 44 N

Подходит для заливки в:

  • электротехническое оборудование независимо от класса напряжения;
  • трансформаторы;
  • масляные выключатели.

Изготавливаются из нафтеновой нефти. В составе – малый коэффициент серы и парафинов. Отличительная особенность – наличие антиокислительных низкотемпературных свойств благодаря добавленным нейтральным присадкам.

Shell Diala

Добывается из ингибированных нефтяных фракций. Отличается повышенными эксплуатационными характеристиками. Это надежное масла на протяжении всего срока эксплуатации.

Shell Diala

Мдпн

Синтетическое масло. Добавляется в электродвигатели погружных насосов. Оснащено присадками для повышения термо-окислительных свойств.

Масло устойчивая к образованию осадков, низким температурам. Доказало безупречную окислительную способность.

Мдпн

Понятие старения

Старение – необратимый процесс в трансформаторном масле, ведь по мере эксплуатации так или иначе попадает влага, продукты окисления. Начинает снижаться эксплуатационные, химические, физические свойства и передачи тепла. Перестает нормально работать трансформатор.

Стоит проводить профилактику, выявлять дефекты путем забора образцов масла для анализа.

Восстанавливаются свойства масла путем сушки, регенерации, очистки.

Причины старения:

  • повышение кислотности;
  • образование осадка на обмотках трансформатора;
  • ухудшение электроизоляционных свойств;
  • окисление – индукционный процесс на начальном этапе.

В масле накапливаются устойчивые продукты окисления: органические перекиси, вода, низкомолекулярные кислоты. Постепенно рабочая жидкость темнеет, мутнеет. Повышается зольность, кислотное число. На поверхности начинают плавать твердые продукты полимеризации, закупоривая охлаждающие каналы трансформатора.

трансформаторное масло

Заменители

Заменителями масла – аналоги – нафтеновые парафины на биологической основе. Они ничем не уступают по свойствам, теплопередаче. Также устойчивы к окислению. Добываются при перегонке, температуре кипения + 300 400 градусов. Представляет собой очищенные фракции от нефти.

Варианты применения трансформаторного масла в быту

Жидкость применяется не только на промышленном оборудовании и силовых трансформаторах, но и в быту:

  • для охлаждения, гашения электрической дуги;
  • заливки в электрооборудование высоких классов напряжения;
  • смазки вакуумных выключателей, высоковольтных трансформаторов.

Сроки эксплуатации трансформатора и масла не связаны между собой напрямую. Однако, высоковольтная установка прослужит безотказно до 15 лет, если производить ежегодную очистку масла и регенерацию 1 раз в пять лет, выводить антиокислители, проводить фильтрацию, устанавливать антиокислительные присадки и расширители с фильтрами для выведения газов, поглощения воды и кислорода.

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.
Трансформатор и емкость с трансформаторным маслом
Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.
рабочая обмотка трансформатора погружена в масло

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:

  1. В электрических трансформаторах, масло выполняет роль диэлектрика и средства для эффективного отвода тепла. Всем известно, что электроустановки сильно греются. Воздушное охлаждение не настолько эффективно, поскольку не может обеспечить плотный контакт объекта охлаждения со средой отвода тепла. Трансформаторы приходится делать массивными, с большой площадью рассеивания. Назначение трансформаторного масла – эффективный отвод тепла при относительно компактной конструкции.
    Радиаторы присутствуют, и даже снабжены вентиляторами обдува.
    Высоковольтный трансформатор
    Но подобная система отвода тепла несоизмерима по габаритам с трансформаторами воздушного охлаждения (в пользу жидкостных).
  2. Кроме того, трансформаторное масло используется в контактных группах выключателей. Разумеется, речь идет не о тех клавишах на стене, которыми вы включаете свет в ванной комнате. Масляные выключатели достигают размеров небольшого дома, и применяются на высоковольтных подстанциях, снабжающих электроэнергией как минимум промышленное предприятие, или целый город.
    Масляные выключатели

Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

К сведению

Объективности ради, заметим: существует и другое решение. Помимо масляных, активно применяются вакуумные выключатели. Правда, они качественно выполняют лишь одну функцию: гашение дуги. Диэлектрические свойства вакуума сопоставимы с обычным воздухом.

Однако, это тема другой статьи.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:
таблица компонентов

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 9 9 5
40°С 11 3,5
20°С 28
-30°С 1500 1300 1300 1200 1200
-40°С 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65

Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Густое масло, механически не сможет быстро заполнить пространство при движении контактов. Образовавшиеся воздушные полости станут поводом для дугообразования. И напротив, достаточно жидкий наполнитель постоянно будет поддерживать среду без пузырьков.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.
тестовый отбор масла из трансформатора

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м’К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К»1 Рг
0 892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.

Главной частью трансформатора являются его обмотки, которые требуется защитить. В процессе понижения высокого в низкое напряжение аппарат генерирует много тепла. Если не удалять тепло, медь начнёт плавиться и электрический контакт будет потерян.

Надежная работа высоковольтных трансформаторов обусловлена применением масла, выполняющего следующие функции:

  • охлаждение. Во время скачков напряжения вверх/вниз температура трансформаторных обмоток увеличивается, что требует надлежащего охлаждения;
  • электрическая изоляция. Масло действует как изолятор между обмотками, увеличенное сопротивление изоляции помогает избежать короткого замыкания;
  • мера безопасности. Газовая защита (по принципу Бухгольца) основана на подаче сигнала на отключение при появлении бурного газообразования, приводящего к короткому замыканию. Индикатор температуры масла описывает внутреннее состояние трансформаторного бака. Масло помогает избежать тяжелых потерь и повреждений аппаратов.

В трансформаторах мощностью 50—500 кВА применяют бумажно-масляную изоляцию, в основе которой лежит изоляционная бумага, пропитанная маслом. У трансформаторов мощностью до 20—30 кВА применяют большие сварные конструкции из стального листа с многочисленными трубами, параллельно выходящими из одной или нескольких её сторон. Магнитопровод с обмотками помещается в трубчатый бак. Масло окружает электрические обмотки, и забирает от них тепло. Через конвекцию, в горячем виде оно поднимается в верхнюю часть трубы, охлаждаясь, опускается вниз, и стекает обратно в резервуар с более низкой температурой. Затем всё повторяется по той же схеме.

Направленное масляное охлаждение обеспечивает равномерную теплоотдачу между обмоткой и маслом, которое имеет:

  1. очень хороший коэффициент теплопроводности (легко отводит тепло);
  2. высокую точку кипения, поэтому оно остается жидким внутри трансформатора.

Химическая стабильность является весьма важным показателем, характеризующим стойкость вещества вне зависимости от времени.
Трансформаторное масло обеспечивает хорошие условия для среды гашения дуги. Изоляция сокращает потери меди за счет нагрева, уменьшает шум, создающийся в трансформаторе, приводит к снижению уровня вибрации. Масло не проводит электричество вообще, что наилучшим образом соответствует условиям короткого замыкания.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Казалось бы, где масло, а где электроприборы? Тем более трансформаторы, внутри которых блуждают огромные токи, и формируется высокое напряжение. Тем не менее подобные электрические установки работают с применением технических жидкостей, и это отнюдь не антифриз и не дистиллированная вода.

Наверное, все видели огромные трансформаторы на подстанциях, и энергоблоках промышленных предприятий. Все они снабжены расширительными емкостями в верхней части.

Именно в эти бочонки заливается трансформаторное масло. Выглядит это вполне привычно для обывателя: корпус электрической установки (по аналогии картера двигателя автомобиля), внутри расположены рабочие узлы. И все это богатство залито маслом до самого верха. Как мы понимаем, о смазке деталей речь не идет: в трансформаторе нет движущихся частей.

Область применения трансформаторного масла

Для начала, развеем некоторые стереотипы. Существует устойчивое заблуждение, что все жидкости являются проводниками. На самом деле далеко не все, и не так явно, как металлы.

Важное свойство трансформаторного масла – высокое сопротивление электрическому току. Настолько высокое, что жидкость фактически является диэлектриком (в разумных пределах, разумеется).

Такая характеристика, как смазывающая способность, в электрике интересна в последнюю очередь. А вот теплопроводность напротив, очень важна.

О свойствах поговорим отдельно, они вытекают из двух областей применения:

  1. В электрических трансформаторах, масло выполняет роль диэлектрика и средства для эффективного отвода тепла. Всем известно, что электроустановки сильно греются. Воздушное охлаждение не настолько эффективно, поскольку не может обеспечить плотный контакт объекта охлаждения со средой отвода тепла. Трансформаторы приходится делать массивными, с большой площадью рассеивания. Назначение трансформаторного масла – эффективный отвод тепла при относительно компактной конструкции.
    Радиаторы присутствуют, и даже снабжены вентиляторами обдува.

    Но подобная система отвода тепла несоизмерима по габаритам с трансформаторами воздушного охлаждения (в пользу жидкостных).
  2. Кроме того, трансформаторное масло используется в контактных группах выключателей. Разумеется, речь идет не о тех клавишах на стене, которыми вы включаете свет в ванной комнате. Масляные выключатели достигают размеров небольшого дома, и применяются на высоковольтных подстанциях, снабжающих электроэнергией как минимум промышленное предприятие, или целый город.

Эксплуатационные показатели подобных устройств поражают воображение: напряжение несколько сотен тысяч вольт, и сила тока до 50 тысяч ампер.

Масло в этих устройствах имеет две функции. Разумеется, изоляционные свойства, как и в трансформаторах. Но главное назначение – эффективное гашение электрической дуги.

При размыкании (замыкании) контактов на электрических коммутационных устройствах с такими параметрами, возникает электрическая дуга, способная разрушить контактную группу за несколько циклов.

Электрическая дуга при размыкании контактов (происшествие на подстанции) — видео

Однако проблемы возникают лишь в воздушной среде. Если внутренняя полость заполнена трансформаторным маслом – искрения и дуги не возникнет.

Технические характеристики трансформаторного масла

Так же, как и минеральное моторное, трансформаторное масло производится путем перегонки подготовленной сырой нефти (очищенной), методом кипячения сырья. После возгонки при температуре 300°C — 400°C, остается так называемый соляровый дистиллят.

Собственно, эта субстанция является основой для получения трансформаторного масла. Во время очистки, снижается насыщенность ароматическими углеродами и не углеродными соединениями. В результате повышается стабильность продукта.

При возгонке и выделении дистиллята, можно управлять физическими и химическими процессами. Манипулируя базовым сырьем и технологией, можно менять свойства трансформаторного масла. Они определяются полученным соотношением компонентов:

Интересно, что этот продукт экологически чист. При его производстве, использовании и утилизации, воздействие на природу не выше, чем у исходного сырья (сырой нефти). В состав не включаются добавки, синтезированные искусственным путем.

Как и нефть, масло для трансформаторов и выключателей не токсично (насколько это можно сказать о нефтепродуктах), не разрушает озоновый слой, и бесследно разлагается в природной среде.

Одна из важных характеристик – плотность трансформаторного масла. Типичная величина лежит в диапазоне 0,82 – 0,89 * 10³ кг/м³. Цифры зависят от температуры: рабочий диапазон в пределах 0°C – 120°C.

При нагреве она уменьшается, этот фактор принимается во внимание при проектировании радиаторной системы охлаждения трансформаторов.

Поскольку масла относительно универсальны, эта характеристика может варьироваться в зависимости от потребностей заказчика. Трансформаторные подстанции располагаются в различных климатических зонах, зачастую в условиях крайнего Севера и Сибири.

Не только плотность меняется в зависимости от температуры

Вязкость трансформаторного масла может радикально изменить общие показатели электроустановки.

Показатели ТКп Масло селективной очистки Т-1500У гк вг АГК МВТ
Кинематическая вязкость, им2/с* при температуре
50°С 9 9 9 9 5
40°С 11 3,5
20°С 28
-30°С 1500 1300 1300 1200 1200
-40°С 800 150
Кислотное число, мг КОН/г, не более 0,02 0,02 0,01 0,01 0,01 0,01 0,02
Температура, °С
Вспышки в закрытом тигле, не ниже 135 150 135 135 135 125 95
Застывания, не выше -45 -45 -45 -45 -45 -60 -65

Этот параметр – порождение компромисса. Для обеспечения электрической прочности масла, вязкость должна быть высокой. Практически, как твердый диэлектрик. Но изоляция проводников, это не единственное предназначение рассматриваемой жидкости.

Принцип работы масляного трансформатора — видео

  • Теплоотвод – возможен при достаточно жидком теплоносителе. То есть, для нормального охлаждения электроустановки вязкость должна быть как можно более низкой.
  • Гашение электрической дуги. Как это работает? В обычной воздушной среде, при размыкании (замыкании) контактов под высокой нагрузкой, возникает дуга, подобная сварочной.

Вспышка и воспламенение

Интересный с точки зрения физики процесса, такой параметр, как температура вспышки трансформаторного масла. Для любых нефтепродуктов, это температура воспламенения жидкой среды, при контакте с открытым источником пламени.

Однако внутри трансформатора не создаются условия для горения, по причине отсутствия достаточного количества кислорода. А вот открытое пламя теоретически возможно: если при размыкании контактов образуется кратковременная дуга.

Поэтому в свойства масел закладывается увеличение температуры вспышки. Это значение постепенно уменьшается, по причине дефектов трансформаторного оборудования. При нормальной работе, температура вспышки напротив, увеличивается. Допустимое значение – более 155°C.

Электрическая дуга или как горят трансформаторы — видео

Для понимания механизма – температура вспышки связана с испаряемостью масла. То есть, оно должно быть достаточно жидким, но при этом не переходить в газообразное состояние при нормальных условиях эксплуатации.

Кроме традиционного параметра, есть такое понятие, как температура самовоспламенения, характерное именно для трансформаторов. В нашем случае эта величина составляет 350°C – 400°C.

Если обмотки нагреются до такой температуры – возникает неконтролируемое горение и взрыв трансформатора. К счастью, подобные случаи происходят крайне редко. Разумеется, при условии соблюдения условий эксплуатации.

Поэтому, вместе с подбором качественного масла, необходимо постоянно следить за состоянием электроустановок. При проведении тестовых отборов жидкости, можно понять, какие проблемы есть в самом трансформаторе или высоковольтном выключателе.

После проведенных исследований, оцениваются такие показатели, как преломление вязкости, плотность, диэлектрические свойства, и пр. Результаты сравниваются с табличными значениями, установленными стандартом применения масел.

В таблице показаны основные показатели трансформаторного масла:

Температура t,
°С
Плотность р,
кг/м3
Cp, кДж/(кгК) λ, Вт/(м’К) а-10**8, м2/с μ-10**4, Пас v-10**6, м2/с ß-10**4, К»1 Рг
892,5 1,549 0,1123 8,14 629,8 70:5 6,80 866
10 886.4 1,620 0,1115 7,83 335,5 37,9 6.85 484
20 880,3 1,666 0,1106 7,56 198,2 22,5 6,90 298
30 874,2 1,729 0,1008 7,28 128,5 14.7 6.95 202
40 868,2 1,788 0,1090 7,03 89.4 10,3 7,00 146
50 862,1 1,846 0,1082 6,80 65.3 7,58 7,05 111
60 856,0 1,905 0,1072 6,58 49,5 5,78 7,10 87,8
70 850,0 1,964 0,1064 6,36 38.6 4,54 7,15 71.3
80 843,9 2,026 0,1056 6,17 30.8 3,66 7,20 59,3
90 837.8 2.085 0,1047 6,00 25,4 3,03 7,25 50,5
100 831,8 2,144 0,1038 5,83 21.3 2,56 7,30 43.9
110 825,7 2,202 0,1030 5,67 18.1 2,20 7,35 38,8
120 819,6 2,261 0,1022 5,50 15.7 1,92 7,40 34,9
  • cp — удельная массовая теплоемкость, без изменения рабочего давления;
  • λ – теплопроводность: общий коэффициент;
  • a – температурная проводимость: общий коэффициент;
  • μ — динамический коэффициент вязкости;
  • ν — кинематический коэффициент вязкости;
  • β — объемное расширение: общий коэффициент;
  • Pr — критерий Прандтля.

Технические жидкости для обеспечения работы трансформаторных подстанций закупаются в огромных объемах, это достаточно затратно. Каждая партия тестируется перед использованием, и в процессе работы.

Испытание трансформаторного масла на пробой — видео

Ежегодно, техническая жидкость требует масштабной очистки. Этим занимаются специальные службы. А каждые 5-6 лет, требуется регенерация (практически полная замена масла в электроустановке). Процедура недешевая, но без ее выполнения эксплуатация трансформатора станет небезопасной.

В качестве компромисса, широко применяется восстановление свойств. Отработка сдается на нефтехимическое предприятие, где масло приобретает первоначальные свойства. Стоимость добавленных присадок многократно ниже, в сравнение с полной заменой материала.

Второстепенные характеристики трансформаторного масла

Устойчивость масла к окислению – это не что иное, как противодействие старению. Есть две негативные стороны этого явления:

  1. Связывание молекулами кислорода активных добавок, которые обеспечивают базовые параметры жидкости.
  2. Отложение продуктов окисления на поверхностях деталей трансформатора: обмотках, проводниках, контактных группах. Это приводит к снижению теплоотвода, с последующим закипанием масла в точках соприкосновения.
  3. Зольность – наличие посторонних примесей и причина их появления. После промывки нового масла, в его составе остаются химические моющие средства (это касается и регенерации старой жидкости).

Если их не удалить – образуются зольные фракции, которые оседают на рабочих частях трансформаторов и выключателей. Для борьбы с этим явлением, в масло добавляются присадки, нейтрализующие солевые и мыльные отложения.

Температура текучести (застывания) характеризует превращение жидкости в консистентную смазку. Этот показатель (от — 35°C до — 50°C) применим лишь при холодном пуске электроустановки. Работающий трансформатор сам является источником тепла, и поддерживает жидкость в рабочем состоянии.

Трансформатор является одним из основных элементов в электроэнергетике, и он должен поддерживаться для гарантированного бесперебойного питания. Без преувеличения можно сказать, что ключевым в сроке эксплуатации силового трансформатора является срок жизни изоляционной системы. 85% поломок трансформатора так или иначе связанны с ней. Говоря об изоляционной системе, мы подразумеваем как жидкую, так и твердую изоляцию. Обе помогают держать в надлежащем состоянии установка очистки трансформаторного масла, о которой и пойдет речь далее в статье.

Изоляционное или трансформаторное масло используется в силовых трансформаторах для двух целей – для изоляции и охлаждения. Оно, являясь высокоочищенным минеральным маслом, которое стабильно при высоких температурах и имеет отличные электрические изоляционные свойства, увеличивает пробивное напряжение, а также отводит тепло из твердой изоляции. К тому же, трансформаторное масло исполняет две другие функции: оно помогает сохранить сердечник и обмотку, так как они полностью погружаются в масло; а также масло предотвращает прямой контакт атмосферного кислорода с бумажной изоляцией из целлюлозы, которая подвержена окислению.

Загрязнение трансформаторного масла

Наличие даже очень маленького содержания влаги в масле очень вредно с точки зрения изоляции, так как это отрицательно влияет на диэлектрические свойства масляной и твердой изоляции трансформатора. Когда трансформатор заполнен маслом, бумага впитывает влагу из масла, что влияет на ее изоляционные свойства и тем самым сокращает срок службы. Даже 8 частиц воды на 1000000 негативно сказывается на изоляции. Как и индустриальные масла, трансформаторные масла окисляются под воздействием чрезмерной температуры и кислорода, особенно при наличии мелких металлических частиц, которые действуют как катализаторы, в результате чего увеличивается кислотное число из-за образования карбоновой кислоты.

Решение есть: установка очистки трансформаторного масла СММ-0,6

Мобильная масляная станция CMM-0.6 предназначена для очистки индустриальных масел с максимальной вязкостью до 70 сСт при температуре 50 °C. Она решает проблему загрязнения, удаляя свободную и растворенную воду, механические примеси и газ из трансформаторного, турбинного, компрессорного и смазочного масла. Установка проста в управлении (имеется всего один кран), компактная (780/570/1510) и многофункциональная (применяется для сушки, нагрева, перекачки, фильтрации, дегазации и для доливки масла в трансформаторы). С СММ-0,6 нет необходимости использовать адсорбент для обезвоживания благодаря термовакуумной сушке. Среди преимуществ СММ-0,6 стоит выделить низкое энергопотребление – не более 12 кВт. Максимальные характеристики масла возможно получить после одного цикла обработки. К тому же установка СММ-0,6 не вызывает загрязнения воздуха или отходов, требующих хранения и утилизации.

Таким образом, установка очистки трансформаторного масла СММ-0,6 от GlobeCore обеспечивает надежную работу электрического и промышленного оборудования, а также предотвращает расходы на закупку нового масла.

Предлагаем вам так же посмотреть видео на нашем ютуб-канале что бы детальней ознакомиться со всеми особенностями установки.

30.11.2021

В масляных силовых трансформаторах масло выполняет две важные функции: работает как изолирующая и как охлаждающая среда.

На состояние и качество масла влияет:

  • контакт с воздухом;
  • высокая температура;
  • солнечный свет;
  • токи короткого замыкания.

От повышения кислотности масла страдает изоляция обмоток трансфооматора. Она постепенно разрушается, а от этого понижается электрическая прочность всего оборудования. 

Характеристики трансформаторного масла

Самые важные характеристики масла:

  • кислотное число – показывает, сколько едкого калия в миллиграммах нужно, чтобы нейтрализовать все свободные кислоты;
  • реакция водной вытяжки – показывает, сколько в масле нерастворимых кислот, в норме этот показатель нейтральный;
  • вязкость – от нее зависят охлаждающие свойства;
  • температура вспышки – при ней пары масла воспламеняются под действием открытого огня;
  • содержание механических примесей и взвешенного угля;
  • пробивное напряжение – максимальное напряжение, при котором масло выполняет изолирующие свойства и предохраняет изоляцию обмоток от пробоя.

Откуда берутся примеси в масле?

Примеси в масле появляются из-за растворения в нем краски, лака и изоляции. Если возникает электрическая дуга при нарушении изоляции – то в масле появляются частички угля. Кроме того, в нем выпадает со временем осадок в виде шлама – это продукты распада самого масла.

Из-за механических примесей нарушается работа масляного трансформатора и выключателей. Примеси понижают электрическую прочность масла, поэтому изолированные ранее друг от друга части трансформатора перекрываются.

Со временем масло меняет цвет. Это происходит из-за нагрева, выпадения осадка и загрязнения смолами. В негерметичных моделях трансформаторов это неминуемый процесс. Поэтому мы рекомендуем брать масло на анализ не реже одного раза в три года.

После короткого замыкания в масляных выключателях с большим объемом масло дополнительно проверяют на содержание взвеси угля.

Если ваш трансформатор регулярно подвергается воздействию высокой температуры и влажности, проверяйте качество масла чаще раза в три года.

Характеристики масла, годного для использования:

  • кислотное число — не более 0,05 мг КОН на 1 кг масла;
  • реакция водной вытяжки — нейтральная;
  • механические примеси — без видимых примесей;
  • падение температуры вспышки — не более 5 °С от изначальной;
  • взвешенный уголь — отсутствие в трансформаторном масле, незначительное количество — в выключателях;
  • электрическая прочность для трансформаторов напряжением до 10 кВ — не ниже 20 кВ/мм;
  • плотность при 20 °С — 0,84—0,89 г/см3;
  • удельное объемное сопротивление равно 1014—1015 Ом-см при 20 °С;
  • tg5 при 20 °С — не более 2 %, при 70 °С — не более 7 %;
  • зольность — не более 0,005 %.

Инструкция по эксплуатации трансформаторного масла

Во время работы негерметичного масляного трансформатора уровень масла снижается со временем: часть испаряется, часть уходит на забор проб для контроля качества. Поэтому доливайте периодически масло.

Важно! Порой от смешения свежего масла с эксплуатируемым, качество последнего ухудшается. Поэтому смешивайте масло только после подтверждения лаборатории.

Эксплуатация масла в холодном климате

В холодных условиях на эксплуатацию масла сильно влияет температура застывания. Чем ниже опускается температура, тем гуще становится масло. Густое, оно хуже циркулирует в баке, соответственно и охлаждает трансформатор хуже. Нормы для t° застывания масла при температуре среды не ниже минус 20 °С – минус 35 °С для масляного выключателя и минус 45 °С для трансформатора. Для остальных областей температура застывания масла должна быть не выше минус 45 °С.

Берем пробы масла

  • Забор масла на анализ делайте только в сухую погоду, чтобы сырой воздух не попал в бак.
  • Проставьте на образце дату и место забора.
  • Доставьте масло на анализ в течение 7 дней.

Замедляем старение масла

Установите термосифонный фильтр. Масло тогда будет непрерывно восстанавливаться при прохождении через силикагель в фильтре. Плюс этого метода, что регенерация происходит прямо во время работы трансформатора.

Часто термосифонный фильтр дополняют азотной защитой – закачивают в бак и изоляцию вместо воздуха азот. В этом случае масло практически перестает окисляться и увлажняться.

Добавьте в масло специальные присадки против окисления – ВТИ-1. Это значительно замедлит процесс саморазрушения масла.

В трансформаторах с негерметичным масляным баком, масло рано или поздно теряет свойства. В этом случае можно его восстановить. Способов восстановления трансформаторного масла существует несколько. Подробнее о них мы расскажем в нашей следующей статье.

Мы надеемся, что наша статья поможет вам продлить срок службы вашего трансформаторного масла. Пускай ваше энергетическое хозяйство работает как часы.

Трансформаторное масло или изоляционное масло — это масло, устойчивое при высоких температурах и обладающее отличными электрическими характеристиками. изоляционные свойства. Он используется в масляных трансформаторах, некоторых типах высоковольтных конденсаторов, люминесцентных лампах балластах, а также некоторых типах высоковольтных переключателей и автоматических выключателей. Его функции заключаются в изоляции, подавлении коронного разряда и дуги, а также в качестве охлаждающей жидкости.

Трансформаторное масло чаще всего основано на минеральном масле, но все большую популярность приобретают альтернативные составы с лучшими инженерными или экологическими свойствами.

Содержание

  • 1 Функция и свойства
  • 2 Альтернативы минеральным маслам
  • 3 Полихлорированные дифенилы (ПХБ)
  • 4 Испытания и качество масла
  • 5 Испытания на месте
  • 6 См. Также
  • 7 Ссылки
  • 8 Внешние ссылки

Функции и свойства

Масляный трансформатор с теплообменниками с воздушным конвекционным охлаждением спереди и сбоку

Основные функции трансформаторного масла — изоляция и круто трансформатор. Следовательно, он должен иметь высокую электрическую прочность, теплопроводность и химическую стабильность, а также должен сохранять эти свойства при длительном хранении при высоких температурах. Типичные характеристики: температура вспышки 140 ° C или выше, температура застывания -40 ° C или ниже, напряжение пробоя диэлектрика 28 кВ (среднеквадратичное значение) или больше.

Для улучшения охлаждения силовых трансформаторов большой мощности масляный бак может иметь внешние радиаторы, через которые масло циркулирует за счет естественной конвекции. Силовые трансформаторы мощностью в тысячи кВА могут также иметь охлаждающие вентиляторы, масляные насосы и даже водомасляные теплообменники.

Силовые трансформаторы подвергаются длительным процессам сушки. с использованием электрического самонагрева, применения вакуума или того и другого, чтобы гарантировать полное отсутствие в трансформаторе водяного пара до введения изоляционного масла. Это помогает предотвратить образование короны и последующий электрический пробой под нагрузкой.

Масляные трансформаторы с расширителем (масляным резервуаром) могут иметь реле детектора газа (реле Бухгольца ). Эти предохранительные устройства обнаруживают скопление газа внутри трансформатора из-за коронного разряда, перегрева или внутренней электрической дуги. При медленном накоплении газа или быстром повышении давления эти устройства могут срабатывать защитный автоматический выключатель, чтобы отключить питание трансформатора. Трансформаторы без расширителей обычно оснащены реле внезапного давления, которые выполняют ту же функцию, что и реле Бухгольца.

Альтернативы минеральным маслам

Минеральные масла все еще широко используются в промышленности. Минеральное масло обычно эффективно в качестве трансформаторного масла, но у него есть некоторые недостатки, одним из которых является его относительно низкая температура воспламенения по сравнению с некоторыми альтернативами. Если в трансформаторе протекает минеральное масло, это может стать причиной возгорания. Нормы пожарной безопасности часто требуют, чтобы в трансформаторах внутри зданий использовалась менее воспламеняющаяся жидкость или использовались сухие трансформаторы без жидкости. Минеральное масло также является загрязнителем окружающей среды, и его изоляционные свойства быстро ухудшаются даже под воздействием небольшого количества воды. По этой причине трансформаторы хорошо оборудованы, чтобы вода не попадала в масло.

Пентаэритрит тетра жирная кислота природные и синтетические сложные эфиры стали все более распространенной альтернативой минеральным маслам, особенно в областях с повышенным риском возгорания, таких как внутри или на море, из-за их низкой летучести и высокой температуры воспламенения, которая может быть выше 300 ° C. Они также имеют более низкую температуру застывания, большую устойчивость к влаге и улучшенные функции при высоких температурах, они нетоксичны и легко биоразлагаемы. Также используются масла на основе силикона или фторуглерода,которые еще менее воспламеняются, но они дороже сложных эфиров и менее подвержены биологическому разложению.

Трансформатор на 380 кВ с растительным масло

Исследователи экспериментируют с рецептурами на растительной основе, например, с использованием кокосового масла. Пока что они не подходят для использования в холодном климате или для напряжений более 230 кВ. Исследователи также исследуют наножидкости для использования в трансформаторах; они будут использоваться в качестве добавок для улучшения стабильности, термических и электрических свойств масла.

Полихлорированные бифенилы (ПХБ)

Полихлорированные бифенилы — это искусственные вещества, впервые синтезированные более века назад и было обнаружено, что они обладают желательными свойствами, которые привели к их широкому использованию. Полихлорированные бифенилы (ПХБ) ранее использовались в качестве трансформаторного масла, поскольку они обладают высокой диэлектрической прочностью и не горючи. К сожалению, они также токсичны, биоаккумулятивны, не поддаются биологическому разложению и их трудно утилизировать безопасно. При горении они образуют еще более токсичные продукты, такие как хлорированные диоксины и хлорированные дибензофураны. Начиная с 1970-х годов производство и новое использование ПХД было запрещено во многих странах из-за опасений по поводу накопления ПХД и токсичности их побочных продуктов. Например, в США производство ПХД было запрещено в 1979 г. Законом о контроле за токсичными веществами. Во многих странах реализуются серьезные программы по утилизации и безопасному уничтожению оборудования, загрязненного ПХД. Одним из методов, который можно использовать для регенерации трансформаторного масла, загрязненного ПХБ, является применение системы удаления ПХБ, также называемой системой дехлорирования ПХД. В системах удаления ПХБ используется щелочная дисперсия для отделения атомов хлора от других молекул в химической реакции. При этом образуется трансформаторное масло, не содержащее ПХД, и осадок, не содержащий ПХД. Затем их можно разделить с помощью центрифуги. Шлам можно утилизировать как обычные промышленные отходы, не содержащие ПХД. Обработанное трансформаторное масло полностью восстанавливается в соответствии с необходимыми стандартами, без какого-либо обнаруживаемого содержания ПХБ. Таким образом, его можно снова использовать в качестве изоляционной жидкости в трансформаторах.

ПХД и минеральное масло могут смешиваться во всех пропорциях, и иногда одно и то же оборудование (бочки, насосы, шланги и т. Д.) Использовалось для любой тип жидкости, поэтому загрязнение трансформаторного масла ПХБ продолжает вызывать беспокойство. Например, в соответствии с действующими правилами концентрация ПХБ, превышающая 5 частей на миллион, может привести к тому, что масло будет классифицировано как опасные отходы в Калифорнии.

Испытания и качество масла

Трансформаторные масла подлежат электрическому и механические напряжения во время работы трансформатора. Кроме того, существует загрязнение, вызванное химическим взаимодействием с обмотками и другой твердой изоляцией, которое катализируется высокой рабочей температурой. Исходные химические свойства трансформаторного масла постепенно меняются, что делает его неэффективным по назначению через много лет. Масло в больших трансформаторах и электрическом оборудовании периодически проверяется на его электрические и химические свойства, чтобы убедиться, что оно пригодно для дальнейшего использования. Иногда состояние масла можно улучшить фильтрацией и обработкой. Испытания можно разделить на:

  1. Анализ растворенного газа
  2. Анализ Фурана
  3. Анализ ПХД
  4. Общие электрические и физические испытания:
    • Цвет и внешний вид
    • Напряжение пробоя
    • Содержание воды
    • Кислотность (значение нейтрализации)
    • Коэффициент диэлектрического рассеяния
    • Удельное сопротивление
    • Отложения и Шлам
    • Температура вспышки
    • Температура застывания
    • Плотность
    • Кинематическая вязкость

Подробные сведения о проведении этих испытаний доступны в стандартах, выпущенных IEC, ASTM, IS, BS и тестирование можно проводить любым из методов. Тесты Furan и DGA предназначены не для определения качества трансформаторного масла, а для определения любых отклонений от нормы во внутренних обмотках трансформатора или бумажной изоляции трансформатора, которые нельзя обнаружить иным способом без полного капитального ремонта трансформатора. Предлагаемые интервалы для этих испытаний:

  • Общие и физические испытания — раз в два года
  • Анализ растворенных газов — ежегодно
  • Испытания на фуран — один раз в 2 года, в зависимости от того, работает ли трансформатор. минимум 5 лет.

Испытания на месте

Некоторые испытания трансформаторного масла можно проводить в полевых условиях с использованием переносного испытательного оборудования. Другие тесты, такие как растворенный газ, обычно требуют отправки пробы в лабораторию. Электронные детекторы растворенного газа можно подключать к важным или вышедшим из строя трансформаторам для постоянного отслеживания тенденций образования газа.

Для определения изоляционных свойств диэлектрического масла из испытуемого устройства берется образец масла, и его напряжение пробоя измеряется на месте в соответствии со следующей последовательностью испытаний:

  • В емкости два испытательных электрода, соответствующих стандартам, с типичным зазором 2,5 мм окружены изолирующим маслом.
  • Во время испытания на электроды подается испытательное напряжение. Испытательное напряжение непрерывно увеличивается до напряжения пробоя с постоянной скоростью нарастания, например 2 кВ / с.
  • В электрической дуге происходит пробой, приводящий к падению испытательного напряжения.
  • Сразу после зажигания дуги испытательное напряжение автоматически отключается.
  • Сверхбыстрое отключение имеет решающее значение, так как энергия, которая поступает в масло и сжигает его во время пробоя, должна быть ограничена, чтобы снизить дополнительное загрязнение от карбонизации на как можно более низком уровне.
  • Среднеквадратичное значение испытательного напряжения измеряется в самый момент пробоя и выражается как напряжение пробоя.
  • После завершения испытания изоляционное масло перемешивается автоматически, и последовательность испытаний повторяется повторно..
  • Результирующее напряжение пробоя рассчитывается как среднее значение отдельных измерений.

См. Также

  • Масло-теплоноситель

Справочная информация

Внешние ссылки

Понравилась статья? Поделить с друзьями:
  • Что такое голубые фишки на фондовом рынке какие компании
  • Что такое дебиторская задолженность управляющей компании
  • Что такое карточка предприятия с банковскими реквизитами
  • Что такое код подразделения банка в реквизитах сбербанка
  • Что такое код подразделения в реквизитах карты сбербанка